Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2018 Mar 15;38(1):70–77. doi: 10.1007/s11596-018-1848-7

Bioinformatics Analysis of Genes and Pathways of CD11b+/Ly6Cintermediate Macrophages after Renal Ischemia-Reperfusion Injury

Dong Sun 1,#, Xin Wan 1,#, Bin-bin Pan 1, Qing Sun 2, Xiao-bing Ji 1, Feng Zhang 1, Hao Zhang 1, Chang-chun Cao 1,2,
PMCID: PMC7089064  PMID: 30074154

Abstract

Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI), which could induce the poor prognosis. The purpose of this study was to characterize the molecular mechanism of the functional changes of CDllb+/Ly6Cintermediate macrophages after renal IRI. The gene expression profiles of CDllb+/Ly6Cintermcdiate macrophages of the sham surgery mice, and the mice 4 h, 24 h and 9 days after renal IRI were downloaded from the Gene Expression Omnibus database. Analysis of mRNA expression profiles was conducted to identify differentially expressed genes (DEGs), biological processes and pathways by the series test of cluster. Protein-protein interaction network was constructed and analysed to discover the key genes. A total of 6738 DEGs were identified and assigned to 20 model profiles. DEGs in profile 13 were one of the predominant expression profiles, which are involved in immune cell chemotaxis and proliferation. Signet analysis showed that Atp5al, Atp5o, Cox4i, Cdc42, Rac2 and Nhp2 were the key genes involved in oxidation-reduction, apoptosis, migration, M1-M2 differentiation, and proliferation of macrophages. RPS18 may be an appreciate reference gene as it was stable in macrophages. The identified DEGs and their enriched pathways investigate factors that may participate in the functional changes of CD 1lb+Ly6Cintermediate macrophages after renal IRI. Moreover, the vital gene Nhp2 may involve the polarization of macrophages, which may be a new target to affect the process of AKI

Key words: renal ischemia-reperfiision injury, macrophage, differentially expressed genes, series test of cluster, functional enrichment analysis, protein-protein interaction

Footnotes

This work was supported by grants from the National Natural Science Foundation of China (No. 81670634), Graduate student scientific research innovation projects in Jiangsu province (No. KYLX15 0981), and Nanjing Medical University Science and Technology Development Fund (No. 2016NJMU065).

The authors contributed equally to this work.

Contributor Information

Dong Sun, Email: sundong@njmu.edu.cn.

Xin Wan, Email: wanxin@njmu.edu.cn.

Chang-chun Cao, Email: caochangchun@njmu.edu.cn.

References

  • 1.Medicine (Baltimore) 2016.
  • 2.Xu G, Player P, Shepherd D, et al. Identifying acute kidney injury in the community—a novel informatics approach. J Nephrol. 2016;29(1):93–98. doi: 10.1007/s40620-015-0190-4. [DOI] [PubMed] [Google Scholar]
  • 3.Ranganathan PV, Jayakumar C, Mohamed R, et al. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2 production. Kidney Int. 2013;83(6):1087–1098. doi: 10.1038/ki.2012.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ponce D, Dias DB, Nascimento GR, et al. Long-term outcome of severe acute kidney injury survivors followed by nephrologists in a developing country. Nephrology (Carlton) 2016;21(4):327–334. doi: 10.1111/nep.12593. [DOI] [PubMed] [Google Scholar]
  • 5.Mehta RL, Burdmann EA, Cerda J, et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. Lancet. 2016;387(10032):2017–2025. doi: 10.1016/S0140-6736(16)30240-9. [DOI] [PubMed] [Google Scholar]
  • 6.Hou L, Chen G, Feng B, et al. Small interfering RNA targeting TNF-alpha gene significantly attenuates renal ischemia-reperfusion injury in mice. J Huazhong Univ Sci Technolog Med Sci. 2016;36(5):634–638. doi: 10.1007/s11596-016-1638-z. [DOI] [PubMed] [Google Scholar]
  • 7.Martina MN, Noel S, Saxena A, et al. Double-negative alphabeta T cells are early responders to AKI and are found in human kidney. J Am Soc Nephrol. 2016;27(4):1113–1123. doi: 10.1681/ASN.2014121214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Karasawa K, Asano K, Moriyama S, et al. Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. J Am Soc Nephrol. 2015;26(4):896–906. doi: 10.1681/ASN.2014020195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Liang S, Wang W, Gou X. MicroRNA 26a modulates regulatory T cells expansion and attenuates renal ischemia-reperfusion injury. Mol Immunol. 2015;65(2):321–327. doi: 10.1016/j.molimm.2015.02.003. [DOI] [PubMed] [Google Scholar]
  • 10.Huen SC, Huynh L, Marlier A, et al. GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol. 2015;26(6):1334–1345. doi: 10.1681/ASN.2014060612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22(2):317–326. doi: 10.1681/ASN.2009060615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Huen SC, Cantley LG. Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol. 2015;30(2):199–209. doi: 10.1007/s00467-013-2726-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cao Q, Wang Y, Wang XM, et al. Renal F4/80+ CDllc+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy. J Am Soc Nephrol. 2015;26(2):349–363. doi: 10.1681/ASN.2013121336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Clements M, Gershenovich M, Chaber C, et al. Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J Am Soc Nephrol. 2016;27(1):159–170. doi: 10.1681/ASN.2014111138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Dragomir AC, Sun R, Choi H, et al. Role of galectin-3 in classical and alternative macrophage activation in the liver following acetaminophen intoxication. J Immunol. 2012;189(12):5934–5941. doi: 10.4049/jimmunol.1201851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Rudnick PA, Wang X, Yan X, et al. Improved normalization of systematic biases affecting ion current measurements in label-free proteomics data. Mol Cell Proteomics. 2014;13(5):1341–1351. doi: 10.1074/mcp.M113.030593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhao YH, Zhang XF, Zhao YQ, et al. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments. J Huazhong Univ Sci Technolog Med Sci. 2017;37(4):621–627. doi: 10.1007/s11596-017-1781-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sci Total Environ. 2014. [DOI] [PubMed]
  • 19.Pathan M, Keerthikumar S, Ang CS, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15(15):2597–2601. doi: 10.1002/pmic.201400515. [DOI] [PubMed] [Google Scholar]
  • 20.Wang ZX, Zhou CX, Elsheikha HM, et al. Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Front Microbiol. 2017;8(985):1–15. doi: 10.3389/fmicb.2017.00985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Cong F, Liu X, Han Z, et al. Transcriptome analysis of chicken kidney tissues following Coronavirus avian infectious bronchitis virus infection. BMC genomics. 2013;14(743):1–13. doi: 10.1186/1471-2164-14-743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:l–7. doi: 10.1186/1752-0509-8-S4-S11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Chen H, Chai W, Li B, et al. Effects of beta-catenin on differentially expressed genes in multiple myeloma. J Huazhong Univ Sei Technolog Med Sei. 2015;35(4):546–552. doi: 10.1007/s11596-015-1468-4. [DOI] [PubMed] [Google Scholar]
  • 24.DiCosmo-Ponticello CJ, Hoover D, Coffinan FD, et al. MIF inhibits monocytic movement through a non-canonical receptor and disruption of temporal Rho GTPase activities in U-937 cells. Cytokine. 2014;69(1):47–55. doi: 10.1016/j.cyto.2014.05.005. [DOI] [PubMed] [Google Scholar]
  • 25.PLoS One. 2014.
  • 26.Sablina AA, Hahn WC. SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev. 2008;27(2):137–146. doi: 10.1007/s10555-008-9116-0. [DOI] [PubMed] [Google Scholar]
  • 27.Pan X, Chen X, Tong X, et al. Ppp2ca knockout in mice spermatogenesis. Reproduction. 2015;149(4):385–391. doi: 10.1530/REP-14-0231. [DOI] [PubMed] [Google Scholar]
  • 28.Katsiari CG, Kyttaris VC, Juang YT, et al. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. J Clin Invest. 2005;115(ll):3193–3204. doi: 10.1172/JCI24895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Barron L, Dooms H, Hoyer KK, et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol. 2010;185(ll):6426–6430. doi: 10.4049/jimmunol.0903940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Okamura H, Yang D, Yoshida K, et al. Protein phosphatase 2A Calpha is involved in osteoclastogenesis by regulating RANKL and OPG expression in osteoblasts. FEBS Lett. 2013;587(1):48–53. doi: 10.1016/j.febslet.2012.10.041. [DOI] [PubMed] [Google Scholar]
  • 31.Bhardwaj A, Singh S, Srivastava SK, et al. Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model. Br J Cancer. 2014;110(8):2000–2010. doi: 10.1038/bjc.2014.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Teng T, Mercer CA, Hexley P, et al. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol. 2013;33(23):4660–4671. doi: 10.1128/MCB.01174-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Zhou X, Hao Q, Zhang Q, et al. Ribosomal proteins Lll and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ. 2015;22(5):755–766. doi: 10.1038/cdd.2014.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Fancello L, Kampen KR, Hofman IJ, et al. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget. 2017;8(9):14462–14478. doi: 10.18632/oncotarget.14895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Wu H, Feigon J. H7ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc Natl Acad Sci USA. 2007;104(16):6655–6660. doi: 10.1073/pnas.0701534104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Watkins NJ, Gottschalk A, Neubauer G, et al. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Garlp in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA. 1998;4(12):1549–1568. doi: 10.1017/S1355838298980761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Henras A, Henry Y, Bousquet-Antonelli C, et al. Nhp2p and Nop1 Op are essential for the function of H/ACA snoRNPs. EMBO J. 1998;17(23):7078–7090. doi: 10.1093/emboj/17.23.7078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kang HS, Jung HM, Jun DY, et al. Expression of the human homologue of the small nucleolar RNA-binding protein NHP2 gene during monocytic differentiation of U937 cells. Biochim Biophys Acta. 2002;1575(1-3):31–39. doi: 10.1016/S0167-4781(02)00240-3. [DOI] [PubMed] [Google Scholar]
  • 39.Li S, Duan J, Li D, et al. Structure of the Shql-Cbf5-NoplO-Garl complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. EMBO J. 2011;30(24):5010–5020. doi: 10.1038/emboj.2011.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev. 1999;9(1):97–103. doi: 10.1016/S0959-437X(99)80014-8. [DOI] [PubMed] [Google Scholar]
  • 41.Li B, Matter EK, Hoppert HT, et al. Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity. Int J Obes (Lond) 2014;38(2):192–197. doi: 10.1038/ijo.2013.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Eissa N, Kermarrec L, Hussein H, et al. Appropriateness of reference genes for normalizing messenger RNA in mouse 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis using quantitative real time PCR. Sci Rep. 2017;7(42427):1–13. doi: 10.1038/srep42427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Tan SC, Ismail MP, Duski DR, et al. Identification of optimal reference genes for normalization of RT-qPCR data in cancerous and non-cancerous tissues of human uterine cervix. Cancer Invest. 2017;35(3):163–173. doi: 10.1080/07357907.2017.1278767. [DOI] [PubMed] [Google Scholar]

Articles from Current Medical Science are provided here courtesy of Nature Publishing Group

RESOURCES