Abstract
The global spread of emergent diseases is inevitably entangled with the structure of the population flows among different geographical regions. The airline transportation network in particular shrinks the geographical space by reducing travel time between the world's most populated areas and defines the main channels along which emergent diseases will spread. In this paper, we investigate the role of the large-scale properties of the airline transportation network in determining the global propagation pattern of emerging diseases. We put forward a stochastic computational framework for the modeling of the global spreading of infectious diseases that takes advantage of the complete International Air Transport Association 2002 database complemented with census population data. The model is analyzed by using for the first time an information theory approach that allows the quantitative characterization of the heterogeneity level and the predictability of the spreading pattern in presence of stochastic fluctuations. In particular we are able to assess the reliability of numerical forecast with respect to the intrinsic stochastic nature of the disease transmission and travel flows. The epidemic pattern predictability is quantitatively determined and traced back to the occurrence of epidemic pathways defining a backbone of dominant connections for the disease spreading. The presented results provide a general computational framework for the analysis of containment policies and risk forecast of global epidemic outbreaks.
Keywords: Complex networks, Epidemiology
Footnotes
On leave from CEA-Centre d'Etudes de Bruyères-Le-Châtel, France.
References
- Albert R., Barabási A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2000;74:47–97. doi: 10.1103/RevModPhys.74.47. [DOI] [Google Scholar]
- Amaral L.A.N., Scala A., Barthélemy M., Stanley H.E. Classes of small-world networks. Proc. Natl. Acad. Sci. U.S.A. 2000;97:11149–11152. doi: 10.1073/pnas.200327197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson R.M., May R.M. Infectious Diseases in Humans. Oxford: Oxford University Press; 1992. p. 4. [Google Scholar]
- Baroyan O.V., Genchikov L.A., Rvachev L.A., Shashkov V.A. An attempt at large-scale influenza epidemic modelling by means of a computer. Bull. Int. Epidemiol. Assoc. 1969;18:22–31. [Google Scholar]
- Barrat A., Barthélemy M., Pastor-Satorras R., Vespignani A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 2004;101:3747–3752. doi: 10.1073/pnas.0400087101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chowell G., Hyman J.M., Eubank S., Castillo-Chavez C. Scaling laws for the movement of people between locations in a large city. Phys. Rev. E. 2003;68:066102. doi: 10.1103/PhysRevE.68.066102. [DOI] [PubMed] [Google Scholar]
- Cliff A., Haggett P. Time, travel and infection. Br. Med. Bull. 2004;69:87–99. doi: 10.1093/bmb/ldh011. [DOI] [PubMed] [Google Scholar]
- Cohen M.L. Changing patterns of infectious disease. Nature. 2000;406:762–767. doi: 10.1038/35021206. [DOI] [PubMed] [Google Scholar]
- Dickman R. Numerical study of a field theory for directed percolation. Phys. Rev. E. 1994;50:4404–4409. doi: 10.1103/PhysRevE.50.4404. [DOI] [PubMed] [Google Scholar]
- Dorogovtsev S.N., Mendes J.F.F. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford: Oxford University Press; 2003. [Google Scholar]
- Eubank S., Guclu H., Anil Kumar V.S., Marathe M.V., Srinivasan A., Toroczkai Z., Wang N. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429:180–184. doi: 10.1038/nature02541. [DOI] [PubMed] [Google Scholar]
- Ferguson N.M., Keeling M.J., Edmunds W.J., Gani R., Grenfell B.T., Anderson R.M., Leach S. Planning for smallpox outbreaks. Nature. 2003;425:681–685. doi: 10.1038/nature02007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flahault A., Valleron A.-J. A method for assessing the global spread of HIV-1 infection based on air-travel. Math. Pop. Studies. 1991;3:1–11. doi: 10.1080/08898489209525336. [DOI] [PubMed] [Google Scholar]
- Gardiner W.C. Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences. 3. New York: Springer; 2004. [Google Scholar]
- Gastner M.T., Newman M.E.J. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci. U.S.A. 2004;101:7499–7504. doi: 10.1073/pnas.0400280101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie D.T. The chemical Langevin equation. J. Chem.Phys. 2000;113:297–306. doi: 10.1063/1.481811. [DOI] [Google Scholar]
- Grais R.F., Hugh Ellis J., Glass G.E. Assessing the impact of airline travel on the geographic spread of pandemic influenza. Eur. J. Epidemiol. 2003;18:1065–1072. doi: 10.1023/A:1026140019146. [DOI] [PubMed] [Google Scholar]
- Grais R.F., Hugh Ellis J., Kress A., Glass G.E. Modeling the spread of annual influenza epidemics in the U.S.: The potential role of air travel. Health Care Manage. Sci. 2004;7:127–134. doi: 10.1023/B:HCMS.0000020652.38181.da. [DOI] [PubMed] [Google Scholar]
- Guimerà R., Mossa S., Turtschi A., Amaral L.A.N. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. U.S.A. 2005;102:7794–7799. doi: 10.1073/pnas.0407994102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hethcote H.W., Yorke J.A. Gonnorhea: Transmission Dynamics and Control. Lecture Notes in Biomathematics 56. Berlin: Springer-Verlag; 1984. [Google Scholar]
- Hufnagel L., Brockmann D., Geisel T. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. U.S.A. 2004;101:15124–15129. doi: 10.1073/pnas.0308344101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Institute of Medicine 1992. Emerging Infections: Microbial Threats to Health in the United States. National Academy Press, Washington, DC. [PubMed]
- Keeling M.J. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B. 1999;266:859–867. doi: 10.1098/rspb.1999.0716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keeling et al. M.J. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science. 2001;294:813–817. doi: 10.1126/science.1065973. [DOI] [PubMed] [Google Scholar]
- Kretzschmar M., Morris M. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 1996;133:165–195. doi: 10.1016/0025-5564(95)00093-3. [DOI] [PubMed] [Google Scholar]
- Lipsitch et al. M. Transmission dynamics and control of Severe Acute Respiratory Syndrome. Science. 2003;300:1966. doi: 10.1126/science.1086616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee, L., 1999. Paper presented in the 37th Annual Meeting of the Association for Computational Linguistics, pp. 25–32.
- Lloyd A.L., May R.M. How viruses spread among computers and people. Science. 2001;292:1316–1317. doi: 10.1126/science.1061076. [DOI] [PubMed] [Google Scholar]
- Longini I.M. A mathematical model for predicting the geographic spread of new infectious agents. Math. Biosci. 1988;90:367–383. doi: 10.1016/0025-5564(88)90075-2. [DOI] [Google Scholar]
- Marro J., Dickman R. Nonequilibrium Phase Transitions and Critical Phenomena. Cambridge, UK: Cambridge University Press; 1998. [Google Scholar]
- Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brunham R.C. Network theory and SARS: Predicting outbreak diversity. J. Theor. Biol. 2005;232:71–81. doi: 10.1016/j.jtbi.2004.07.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray J.D. Mathematical Biology. 2. New York: Springer; 1993. [Google Scholar]
- Pastor-Satorras R., Vespignani A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2001;86:3200–3203. doi: 10.1103/PhysRevLett.86.3200. [DOI] [PubMed] [Google Scholar]
- Pastor-Satorras R., Vespignani A. Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge, UK: Cambridge University Press; 2003. [Google Scholar]
- Riley et al. S. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science. 2003;300:1961–1966. doi: 10.1126/science.1086478. [DOI] [PubMed] [Google Scholar]
- Rvachev L.A., Longini I.M. A mathematical model for the global spread of influenza. Math. Biosci. 1985;75:3–22. doi: 10.1016/0025-5564(85)90064-1. [DOI] [Google Scholar]
- Wong S.K.M., Yao Y.Y. SIGIR '87: Proceedings of the 10th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press; 1987. pp. 3–12. [Google Scholar]
- Zipf G.K. Human Behavior and the Principle of Least Efforts. Reading, MA: Addison-Wesley; 1949. [Google Scholar]