Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009 Feb 22;43(1):63–72. doi: 10.3103/S0095452709010113

Role of siRNAs and miRNAs in the processes of RNA-mediated gene silencing during viral infections

I Krulko 1, D Ustyanenko 1, V Polischuk 1,
PMCID: PMC7089099  PMID: 32214541

Abstract

Phenomenon of RNA-induced gene silencing is a highly conservative mechanism among eukaryotic organisms. Several classes of small RNAs (siRNAs and miRNAs) 21–25 nt in length, which play a significant role in the processes of development of an organism, occurred important components of antiviral defence in animals and plants. This review shortly describes the main stages of gene silencing mechanism, features of antiviral RNA silencing in plants, invertebrates, mammals, ways of suppression of RNA-interference by viruses, as well as possible approaches of utilization of abovementioned phenomenon for struggling against viral infections.

Key words: gene silencing, interference, transformation, antiviral, siRNAs, miRNAs

Abbreviations

PTGS

posttranscriptional gene silencing

dsRNA

double stranded RNA

nt

nucleotide

siRNA

small interfering RNA

miRNA

micro RNA

RISC

RNA-induced silencing complex

RdRP

RNA-dependent RNA polymerase

TMV

tobacco mosaic virus

VIGS

virus induced gene silencing

CP

coat protein

TEV

tobacco etch virus

VSV

vesicular stomatitis virus

PFV-1

primate foamy virus 1

GFP

green fluorescent protein

EBV

Epstein-Barr virus

PVY

potato virus Y

PVX

potato virus X

ORSV

Odontoglossum rings pot virus

HIV

Human immunodeficiency virus

HBV

Hepatitis B virus

HCV

Hepatitis C virus

SARS-CoV

Severe Acute Respiratory Syndrome-Coronavirus

CMV

Cucumber mosaic virus

ZYMV

Zucchini mosaic virus

WMV-2

Watermelon mosaic virus-2

TSWV

Tomato wilt spot virus

TCSV

Tomato chlorotic spot virus

PRSV

Peanut ring spot virus

Footnotes

The article is published in the original.

References

  • 1.Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Calzone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell. 1990;2:279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Van der Krol A.R., et al. Functional Analysis of the Cellular RNA-Directed RNA Polymerase. Plant Cell. 1990;2:291–295. [Google Scholar]
  • 3.Guo S., Kemphues K.J. Par-1, a Gene Required for Establishing Polarity in C. elegans Embryos, Encodes a Putative Serine Kinase That Is Asymmetrically Distributed. Cell. 1995;81:611–620. doi: 10.1016/0092-8674(95)90082-9. [DOI] [PubMed] [Google Scholar]
  • 4.Fire A., et al. Potent and Specific Genetic Interference by Double Stranded RBA in C. elegance. Nature. 1998;391:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  • 5.Elbashir, et al. Analysis of Gene Function in Somatic Mammalian Cells Using Small Interfering RNAs. Methods. 2002;26:199–213. doi: 10.1016/S1046-2023(02)00023-3. [DOI] [PubMed] [Google Scholar]
  • 6.Vella M.C., Slack F.J. C. elegans microRNAs. WormBook. 2005;21:1–9. doi: 10.1895/wormbook.1.26.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wilson T., et al. Strategies to Protect Crop Plants Against Viruses: Pathogen Derived Resistance Blossoms. Proc. Natl. Acad. Sci. USA. 1993;90:3134–3141. doi: 10.1073/pnas.90.8.3134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chiromatzo, et al. miRNApath: A Database of miRNAs, Target Genes and Metabolic Pathways. Genet. Mol. Res. 2007;6(4):859–865. [PubMed] [Google Scholar]
  • 9.Li, et al. Small dsRNAs Induce Transcriptional Activation in Human Cells. Proc. Natl. Acad. Sci. USA. 2006;103(46):17337–17342. doi: 10.1073/pnas.0607015103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Fire, et al. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  • 11.Song, et al. RNA Interference Targeting Fas Protects Mice from Fulminate Hepatitis. Nat. Med. 2003;3:347–351. doi: 10.1038/nm828. [DOI] [PubMed] [Google Scholar]
  • 12.Elbashir S., Tusch T. Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature. 2001;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  • 13.Zamore, et al. RNAi: Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals. Cell. 2000;101(1):25–33. doi: 10.1016/S0092-8674(00)80620-0. [DOI] [PubMed] [Google Scholar]
  • 14.Fire, A. and Melo, C., http://nobelprize.org/nobel_prizes/medicine/laureates/2006/press.html.
  • 15.Guo S., Kemphues K. Par-1, a Gene Required for Establishing Polarity in C. elegans Embryos, Encodes a Putative Ser/Thr Kinase That Is Asymmetrically Distributed. Cell. 1995;81(4):611–620. doi: 10.1016/0092-8674(95)90082-9. [DOI] [PubMed] [Google Scholar]
  • 16.Zeng Y., et al. RNA Interference in Human Cells Is Restricted to the Cytoplasm. RNA. 2002;8:855–860. doi: 10.1017/s1355838202020071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Gartel A., et al. RNA Interference in Cancer. Biomol. Eng. 2006;23(1):17–34. doi: 10.1016/j.bioeng.2006.01.002. [DOI] [PubMed] [Google Scholar]
  • 18.Jorgensen R., et al. Cosuppression, Flower Color Patterns, and Metastable Gene Expression States. Science. 1995;268(5211):686–691. doi: 10.1126/science.268.5211.686. [DOI] [PubMed] [Google Scholar]
  • 19.Lomonossoff G.P., et al. Pathogen-Derived Resistance to Plant Viruses. Ann. Rev. Phytopthol. 1995;33:323–343. doi: 10.1146/annurev.py.33.090195.001543. [DOI] [PubMed] [Google Scholar]
  • 20.Zamore D., Tomari Y. Perspective: Machines for RNAi. Genes and Development. 2005;19:517–529. doi: 10.1101/gad.1284105. [DOI] [PubMed] [Google Scholar]
  • 21.Rickford A., et al. Quelling in Neurospora crassa. Adv. Genetic. 2002;46:277–303. doi: 10.1016/s0065-2660(02)46010-5. [DOI] [PubMed] [Google Scholar]
  • 22.Borsani O., et al. Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis. Cell. 2005;123:1279–1291. doi: 10.1016/j.cell.2005.11.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lund E., et al. Nuclear Export of Micro RNA Precurosors. Science. 2004;2(303):95–98. doi: 10.1126/science.1090599. [DOI] [PubMed] [Google Scholar]
  • 24.Mlotshwa, et al. RNA Silencing and the Mobile Silencing Signal the Plant Cell. 2002;14:289–301. doi: 10.1105/tpc.001677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Noah C., Welker N. Genes Misregulated in C. elegans Deficient in Dicer, RDE-4, or RDE-1 Are Enriched for Innate Immunity Genes. RNA. 2007;13:1090–1102. doi: 10.1261/rna.542107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ketting R.F., et al. Dicer Functions in RNA Interference and in Synthesis of Small RNA Involved in Developmental Timing in C. elegans. Genes Dev. 2001;15(20):2654–2659. doi: 10.1101/gad.927801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ketting R.F., et al. Dicer Functions in RNA Interference and in Synthesis of Small RNA Involved in Developmental Timing in C. elegans. Genes Dev. 2001;15:2654–2659. doi: 10.1101/gad.927801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Catalanotto C., et al. Redundancy of the Two Dicer Genes in Transgene-Induced Posttranscriptional Gene Silencing in Neurospora crassa. Molecular and Cellular Biology. 2004;24:2536–2545. doi: 10.1128/MCB.24.6.2536-2545.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Xie Z., et al. Dicer-Like 4 Functions in Trans-Acting Small Interfering RNA Biogenesis and Vegetative Phase Change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2005;102(36):12984–12989. doi: 10.1073/pnas.0506426102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Comella P., et al. Characterization of a Ribonuclease III-Like Protein Required for Cleavage of the Pre-rRNA in the 3’ETS in Arabidopsis. Nucleic Acids Research. 2007;14:345–349. doi: 10.1093/nar/gkm1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Liu X., et al. Dicer-2 and R2D2 Coordinately Bind siRNA to Promote Assembly of the siRISC Complexes RNA. 2006;12:1514–1520. doi: 10.1261/rna.101606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Du Q., et al. DCL4 Targets Cucumber Mosaic Virus Satellite RNA at Novel Secondary Structures. J. Virol. 2007;81(17):9142–9151. doi: 10.1128/JVI.02885-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Xie Z., et al. Genetic and Functional Diversification of Small RNA Pathways in Plants. PLoS Biol. 2004;2:102–104. doi: 10.1371/journal.pbio.0020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Zhang I., Kolb F.A. Single Processing Center Models for Human Dicer and Bacterial RNase III. Cell. 2004;118:57–68. doi: 10.1016/j.cell.2004.06.017. [DOI] [PubMed] [Google Scholar]
  • 35.Gan J., et al. The Mechanism of Double-Stranded RNA Processing by Ribonuclease III: How Dicer Dices. Cell. 2006;124:355–399. doi: 10.1016/j.cell.2005.11.034. [DOI] [PubMed] [Google Scholar]
  • 36.MacRae I.J., et al. Structural Basis for Double-Stranded RNA Processing by Dicer Science. 2006;13(311):195–198. doi: 10.1126/science.1121638. [DOI] [PubMed] [Google Scholar]
  • 37.Ungel A., et al. Structure and Nucleic-Acid Binding of the Drosophila Argonaut 2 PAZ Domain. Nature (London) 2003;426:465–460. doi: 10.1038/nature02123. [DOI] [PubMed] [Google Scholar]
  • 38.Song J., et al. The Crystal Structure of the Argonaute 2 PAZ Domain Reveals an RNA Binding Motif in RNAi Effector Complexes. Nat. Struct. Biol. 2003;10:1026–1032. doi: 10.1038/nsb1016. [DOI] [PubMed] [Google Scholar]
  • 39.Yan K., et al. Structure and Conserved RNA Bindina of the PAZ Domain. Nature (London) 2003;426:468–474. doi: 10.1038/nature02129. [DOI] [PubMed] [Google Scholar]
  • 40.Song, et al. Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science. 2004;3(305):5689–5696. doi: 10.1126/science.1102514. [DOI] [PubMed] [Google Scholar]
  • 41.Yigit E., et al. Analysis of the C. elegans Argonaute Subfamily Reveals That Distinct Argonautes Act Sequentially during RNAi. Cell. 2003;127:747–757. doi: 10.1016/j.cell.2006.09.033. [DOI] [PubMed] [Google Scholar]
  • 42.Bentwich I., et al. The Expression of Argonaute 2 and Related microRNA Biogenesis Proteins in Normal and Hypoxic Trophoblasts. Nat. Genet. 2005;37:766–771. [Google Scholar]
  • 43.Bhattacharya, et al. Argonaute and Company: Sailing Against the Wind. Cell. 2007;128:322–328. doi: 10.1016/j.cell.2007.02.033. [DOI] [PubMed] [Google Scholar]
  • 44.McConnell S., et al. Role of PHABULOSA and PHAVOLUTA in Determining Radial Patterning in Shoots. Nature. 2001;411:709–713. doi: 10.1038/35079635. [DOI] [PubMed] [Google Scholar]
  • 45.Soon J., et al. Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science. 2004;305:925–929. doi: 10.1126/science.1102514. [DOI] [PubMed] [Google Scholar]
  • 46.Meister G., Tuschl T. Mechanisms of Gene Silencing by Double Stranded RNA. Nature. 2004;431:343–349. doi: 10.1038/nature02873. [DOI] [PubMed] [Google Scholar]
  • 47.Hall T.M., et al. Structure and Function of Argonaute Proteins. Structure. 2005;13(10):1403–1408. doi: 10.1016/j.str.2005.08.005. [DOI] [PubMed] [Google Scholar]
  • 48.Dykxhroon D., et al. The Silent Treatment: siRNAs as Small Molecule Drugs. Gene Therapy. 2006;1:12–16. doi: 10.1038/sj.gt.3302703. [DOI] [PubMed] [Google Scholar]
  • 49.Sijen S., et al. Secondary siRNAs Result from Unprimed RNA Synthesis and Form a Distinct Class. Science. 2007;315(5809):244–247. doi: 10.1126/science.1136699. [DOI] [PubMed] [Google Scholar]
  • 50.Diallo, Long Endogenous dsRNAs Can Induce Complete Gene Silencing in Mammalian Cells and Primary Cultures. Oligonucleotides. 2003;13(5):381–392. doi: 10.1089/154545703322617069. [DOI] [PubMed] [Google Scholar]
  • 51.Matsumoto S., et al. Analysis of dsRNA-Induced Apoptosis Pathways Using IFN Response-Noninducible siRNA Expression Vector Library. J. Biol. Chem. 2005;14:546–548. doi: 10.1074/jbc.M412784200. [DOI] [PubMed] [Google Scholar]
  • 52.Zuniga L., et al. Production of Interferon-Alpha Induced by dsRNA in Human Peripheral Blood Mononuclear Cell Cultures: Role of Priming by dsRNAInduced Interferons-Gamma and -Beta. J. Interferon. Res. 1989;9(4):445–456. doi: 10.1089/jir.1989.9.445. [DOI] [PubMed] [Google Scholar]
  • 53.Asangani I., et al. MicroRNA-21 (miR-21) Post-Transcriptionally Downregulates Tumor Suppressor Pdcd4 and Stimulates Invasion, Intravasation and Metastasis in Colorectal Cancer. Oncogene. 2007;10:1038–1043. doi: 10.1038/sj.onc.1210856. [DOI] [PubMed] [Google Scholar]
  • 54.Peggy S., et al. Accumulation of miR-155 and BIC RNA in Human B Cell Lymphomas. PNAS. 2005;102(10):3627–3632. doi: 10.1073/pnas.0500613102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Saini H.K., et al. Genomic Analysis of Human microRNA Transcripts. PNAS. 2007;104(45):17 719–17 724. doi: 10.1073/pnas.0703890104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Narry K., et al. Genomics of Micro RNA. Trends in Genetics. 2006;22(3):165–171. doi: 10.1016/j.tig.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 57.Shirina T.V., Bobrovskaya M.T., Kozlov E.A. MicroRNA: From Basic Studies to Their Application. Biopolym. Cell. 2007;23(6):467–482. [Google Scholar]
  • 58.Akihiro, et al. Specific Interactions between Dicer-Like Proteins and HYL1/DRB-Family dsRNA-Binding Proteins. Arabidopsis thaliana, Plant Molecular Biology. 2005;57(2):173–188. doi: 10.1007/s11103-004-6853-5. [DOI] [PubMed] [Google Scholar]
  • 59.Krista M., et al. BollmanHASTY, the Arabidopsis Ortholog of Exportin 5/MSN5, Regulates Phase Change and Morphogenesis. Development. 2003;130:1493–1504. doi: 10.1242/dev.00362. [DOI] [PubMed] [Google Scholar]
  • 60.Narry K., et al. MicroRNA Precursors in Motion: Exportin-5 Mediates Their Nuclear Export. Trends in Cell Biology. 2005;14(4):156–159. doi: 10.1016/j.tcb.2004.02.006. [DOI] [PubMed] [Google Scholar]
  • 61.Carrington, Ambros Role of MicroRNAs in Plant and Animal Development. Science. 2003;17:336–339. doi: 10.1126/science.1085242. [DOI] [PubMed] [Google Scholar]
  • 62.Schwarz D., Zamore P. Why Do miRNAs Live in the miRNP. Genes and Development. 2002;16(9):1025–1031. doi: 10.1101/gad.992502. [DOI] [PubMed] [Google Scholar]
  • 63.Vasquez F., et al. Arabidopsis Endogenous Small RNAs: Highways and Byways. Trends in Plant Science. 2004;11(9):460–468. doi: 10.1016/j.tplants.2006.07.006. [DOI] [PubMed] [Google Scholar]
  • 64.Dyxkhroon D., et al. P-bodies and RNAi: The Missing Link. Journal of RNAi and Gene Silencing. 2006;2(1):105. [PMC free article] [PubMed] [Google Scholar]
  • 65.Gazzani S., et al. Arabidopsis XRN4 Degrades Aberrant RNA That Initiates Posttranscriptional Gene Silencing. Cell and Dev. Biology. 2006;13(4):164–167. [Google Scholar]
  • 66.Goodwin T., et al. The Biochemistry of the Carotenoids. Plants. 1980;1:377–380. [Google Scholar]
  • 67.Kumagai, et al. Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived RNA. Proc. Natl. Acadi. Sci. USA. 1995;92:1679–1683. doi: 10.1073/pnas.92.5.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lindbo J., Dougherty W. Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts. Virology. 1992;189:725–733. doi: 10.1016/0042-6822(92)90595-g. [DOI] [PubMed] [Google Scholar]
  • 69.Griffits-Jones S., et al. miRBase: MicroRNA Sequence, Targets and Gene Nomenclature. Nucleic Acids Research. 2006;34:140–144. doi: 10.1093/nar/gkj112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Clemens J., et al. Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction. PNAS. 2000;97(12):6499–6503. doi: 10.1073/pnas.110149597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Sanches-Varqas I., et al. RNA Interference, Arthropod-Borne Viruses, and Mosquitoes. Virus Res. 2004;102(1):65–74. doi: 10.1016/j.virusres.2004.01.017. [DOI] [PubMed] [Google Scholar]
  • 72.Li H., et al. Induction and Suppression of RNA Silencing by an Animal Virus. Science. 2002;296(5571):1319–1321. doi: 10.1126/science.1070948. [DOI] [PubMed] [Google Scholar]
  • 73.Uhlirova M., et al. Use of Sindbis Virus-Mediated RNA-Interference to Demonstrate a Conserved Role of Broad-Complex in Insect Metamorphosis. PNAS. 2003;100(26):15607–15612. doi: 10.1073/pnas.2136837100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Roignant J., et al. Absence of Transitive and Systemic Pathways Allows Cell-Specific and Isoform-Specific RNAi in Drosophila. RNA. 2003;9:299–308. doi: 10.1261/rna.2154103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Winston W., et al. Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1. Science. 2002;10:1126–1132. doi: 10.1126/science.1068836. [DOI] [PubMed] [Google Scholar]
  • 76.Fire A., et al. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  • 77.Makeyev E., Bamford D. Cellular RNA-Dependent RNA Polymerase Involved in Posttranscriptional Gene Silencing Has Two Distinct Activity Modes. Molecular Cell. 2001;10(6):1417–1427. doi: 10.1016/s1097-2765(02)00780-3. [DOI] [PubMed] [Google Scholar]
  • 78.Grishok A., et al. Transcriptional Silencing of a Transgene by RNAi in the Soma of C. elegans. Genes and Development. 2005;19:683–696. doi: 10.1101/gad.1247705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Cogoni C., Macino G. Post Transcriptional Gene Silencing Across Kingdoms. Current Opinion in Genetics and Development. 2000;10(6):638–643. doi: 10.1016/s0959-437x(00)00134-9. [DOI] [PubMed] [Google Scholar]
  • 80.Pak J., Fire A. Distinct Populations of Primary and Secondary Effectors during RNAi in C. elegans. Science. 2007;12:241–244. doi: 10.1126/science.1132839. [DOI] [PubMed] [Google Scholar]
  • 81.Ketting R., et al. Mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RNaseD. Cell. 1999;99(2):133–141. doi: 10.1016/s0092-8674(00)81645-1. [DOI] [PubMed] [Google Scholar]
  • 82.Lu R., et al. Animal Virus Replication and RNAi-Mediated Aantiviral Silencing in Caenorhabditis elegans. Nature. 2005;436(7053):1040–1043. doi: 10.1038/nature03870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Pfeffer S., et al. Identification of Virus-Encoded microRNAs. Science. 2004;304:734. doi: 10.1126/science.1096781. [DOI] [PubMed] [Google Scholar]
  • 84.Lecellier C., Dunoyer P., et al. A Cellular MicroRNA Mediates Antiviral Defense in Human Cells. Science. 2005;308:557–560. doi: 10.1126/science.1108784. [DOI] [PubMed] [Google Scholar]
  • 85.Scaria V., et al. Host-Virus Interaction: A New Role for miRNAs. Retrovirology. 2006;3(68):776–779. doi: 10.1186/1742-4690-3-68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Williams A., Moschos S., et al. Maternally Imprinted microRNAs Are Differentially Expressed during Mouse and Human Lung Development. Dev. Dyn. 2007;236:572–580. doi: 10.1002/dvdy.21047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Olusegun S., et al. Effects of Single and Double Infections with Potato Virus X and Tobacco Mosaic Virus on Disease Development, Plant Growth and Virus Accumulation in Tomato. Fitopatol. Bras. 2002;27(3):430–436. [Google Scholar]
  • 88.Gammelgard J., et al. Potyvirus-Induced Gene Silencing: The Dynamic Process of Systemic Silencing and Silencing Suppression. J. Gen. Virol. 2007;88:2337–2346. doi: 10.1099/vir.0.82928-0. [DOI] [PubMed] [Google Scholar]
  • 89.Roth B., et al. Plant Viral Suppressors of RNA Silencing. Virus Res. 2004;102:97–108. doi: 10.1016/j.virusres.2004.01.020. [DOI] [PubMed] [Google Scholar]
  • 90.Anandalakshmi R., et al. A Viral Suppressor of Gene Silencing in Plants. Proc. Natl. Acad. Sci. USA. 1998;95(22):13079–13084. doi: 10.1073/pnas.95.22.13079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Dunoyer P., et al. Probing the microRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA Silencing. The Plant Cell. 2004;16:1235–1250. doi: 10.1105/tpc.020719. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 92.Park J., et al. The Multifunctional Plant Viral Ssuppressor of Gene Silencing P19 Interacts with Itself and an RNA Binding Host Protein. Virology. 2004;323(1):49–58. doi: 10.1016/j.virol.2004.02.008. [DOI] [PubMed] [Google Scholar]
  • 93.Linquel A., et al. The Structure of the Flock House Virus B2 Protein, a Viral Suppressor of RNA Interference, Shows a Novel Mode of Double-Stranded RNA Recognition. EMBO Rep. 2005;6(12):1149–1155. doi: 10.1038/sj.embor.7400583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Delgadillo O., et al. Human Influenza Virus NS1 Protein Enhances Viral Pathogenicity and Acts as an RNA Silencing Suppressor in Plants. Journal of General Virology. 2004;85(4):993–999. doi: 10.1099/vir.0.19735-0. [DOI] [PubMed] [Google Scholar]
  • 95.Schubert J., Matousek J., Mattern D. Pathogen-Derived Resistance in Potato to Potato Virus Y—Aspects of Stability and Biosafety under Field Conditions. Virus Research. 2004;100(1):41–50. doi: 10.1016/j.virusres.2003.12.013. [DOI] [PubMed] [Google Scholar]
  • 96.Wittner A., et al. N. benthamiana Plants Transformed with the Plum Pox Virus Helicase Gene Are Resistant to Virus Infection. Virus Research. 1998;34:97–103. doi: 10.1016/s0168-1702(97)00133-0. [DOI] [PubMed] [Google Scholar]
  • 97.Scorza R., et al. Post-Transcriptional Gene Silencing in Plum Pox Virus Resistant Transgenic European Plum Containing the Plum Pox Virus Coat Protein Gene. Transgenic Res. 2001;10(3):201–209. doi: 10.1023/a:1016644823203. [DOI] [PubMed] [Google Scholar]
  • 98.Di Nicola-Negri E., et al. Hairpin RNA-Mediated Silencing of Plum Pox Virus P1 and HC-Pro Genes for Efficient and Predictable Resistance to the Virus. Transgenic Res. 2005;14(6):989–994. doi: 10.1007/s11248-005-1773-y. [DOI] [PubMed] [Google Scholar]
  • 99.Cave E., et al. Silencing of HIV-1 Subtype C Primary Isolates by Expressed Small Hairpin RNAs Targeted to Gag AIDS. Res. Hum. Retroviruses. 2006;22(5):401–410. doi: 10.1089/aid.2006.22.401. [DOI] [PubMed] [Google Scholar]
  • 100.Brake O., et al. Silencing of HIV-1 with RNA Interference: A Multiple shRNA Approach. Mol. Ther. 2006;14(6):883–892. doi: 10.1016/j.ymthe.2006.07.007. [DOI] [PubMed] [Google Scholar]
  • 101.Bennasser Y., Le S., Yeung M., Jeang K. HIV-I Encoded Candidate Micro-RNAs and Their Cellular Targets. Retrovirology. 2004;1:43–47. doi: 10.1186/1742-4690-1-43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Volarevic M., et al. Potential Role of RNAi in the Treatment of HCV Infection. Expert Rev. Anti Infect. Ther. 2007;5(5):823–831. doi: 10.1586/14787210.5.5.823. [DOI] [PubMed] [Google Scholar]
  • 103.Wu Y., et al. Inhibition of Highly Pathogenic Avian H5N1 Influenza Virus Replication by RNA Oligonucleotides Targeting NS1 Gene. Biochem. Biophys. Res. Commun. 2008;365(2):369–374. doi: 10.1016/j.bbrc.2007.10.196. [DOI] [PubMed] [Google Scholar]
  • 104.Kayhan H., et al. Inhibition of Hepatitis B Virus Replication by shRNAs in Stably HBV Expressed HEPG2 2.2.15 Cell Lines. Arch. Virol. 2007;152(5):871–879. doi: 10.1007/s00705-006-0918-5. [DOI] [PubMed] [Google Scholar]
  • 105.Wu C., Chang Y. Antiviral Applications of RNAi for Coronavirus. Expert Opin. Investig. Drugs. 2006;15(2):89–97. doi: 10.1517/13543784.15.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Kumar P., et al. A Single siRNA Suppresses Fatal Encephalitis Induced by Two Different Flaviviruses. PLoS Med. 2006;3(4):36–45. doi: 10.1371/journal.pmed.0030096. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytology and Genetics are provided here courtesy of Nature Publishing Group

RESOURCES