Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007;52(17):2374–2379. doi: 10.1007/s11434-007-0374-y

Genetic insight of the H5N1 hemagglutinin cleavage site

XiaoLi Guo 1, YiSheng Zhu 1,, YiXue Li 1, Ping Shi 1, HaoKui Zhou 1, JinSong Yao 1, ZhenDe Huang 1, DongQing Wei 1,
PMCID: PMC7089101  PMID: 32214726

Abstract

The cleavability of the hemagglutinin (HA) plays a major role in virulence of avian influenza viruses. Detailed analyses of the cleavage sequences and their evolution would give insights into the high pathogenicity of the H5N1 virus. HA segments were visually identifiable in the cellular automata (CA) image, and a feature gene segment (FGS) was only found in H5N1 rather than any other subtype. This FGS is a 30-bp gene segment mainly consisting of ‘A’ and ‘G’. When translated into amino acids the FGS converted into a sequence of mainly basic amino acids with positive charges. This feature amino acid segment (FAAS) was located in the cleavage site loop of HA which was potentially cleavable by various proteases. The 3D structure of H5N1 HA was reconstructed using homology modelling. It was found that the cleavage site loop was well exposed to potential proteases. The molecular surfaces were reconstructed to study how mutation and deletion of some amino acids in the FAAS affected the charge distribution. It was found that some mutations had severely changed the landscape of the charge distribution. Statistical analyses of FAAS were made with respect to when and where the H5N1 viruses were found. In 2005, there were less un-mutated FAAS than the other years according to temporal evolution, and more mutated FAAS appeared in China than other regions according to geographic distribution. These results are helpful for exploring the evolution of virus high pathogenicity.

Keywords: H5N1 hemagglutinin, cleavage site, cellular automata, feature amino acid segment, homology modelling

Footnotes

Supported by the Chinese National Key Research Program of Basic Sciences (Grant No. 2005CB724303), the National Natural Science Foundation of China (Grant No. 10376024), and the Tianjin Commission of Sciences and Technology (Grant No. 033801911)

Contributor Information

YiSheng Zhu, Email: yszhu@sjtu.edu.cn.

DongQing Wei, Email: dqwei@sjtu.edu.cn.

References

  • 1.Subbarao K., Klimov A., Katz J., et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279(5349):393–396. doi: 10.1126/science.279.5349.393. [DOI] [PubMed] [Google Scholar]
  • 2.Hatta M., Gao P., Halfmann P., et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293(5536):1840–1842. doi: 10.1126/science.1062882. [DOI] [PubMed] [Google Scholar]
  • 3.Li K. S., Guan Y., Wang J., et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004;430(6996):209–213. doi: 10.1038/nature02746. [DOI] [PubMed] [Google Scholar]
  • 4.Kido H., Yokogoshi Y., Sakai K., et al. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J Biol Chem. 1992;267(19):13573–13579. [PubMed] [Google Scholar]
  • 5.Xiao X., Shao S., Ding Y., et al. Using cellular automata to generate image representation for biological sequences. Amino Acids. 2005;28(1):29–35. doi: 10.1007/s00726-004-0154-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wang M., Yao J. S., Huang Z. D., et al. A new nucleotide-composition based fingerprint of SARS-CoV with visualization analysis. Med Chem. 2005;1(1):39–47. doi: 10.2174/1573406053402505. [DOI] [PubMed] [Google Scholar]
  • 7.Xiao X., Shao S., Ding Y., et al. Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids. 2006;30(1):49–54. doi: 10.1007/s00726-005-0225-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kido H., Sakai K., Kishino Y., et al. Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus. FEBS Lett. 1993;322(2):115–119. doi: 10.1016/0014-5793(93)81549-F. [DOI] [PubMed] [Google Scholar]
  • 9.Levitt M. Accurate modeling of protein conformation by automatic segment matching. J Mol Biol. 1992;226(2):507–533. doi: 10.1016/0022-2836(92)90964-L. [DOI] [PubMed] [Google Scholar]
  • 10.Fechteler T., Dengler U., Schomberg D. Prediction of protein three-dimensional structures in insertion and deletion regions: A procedure for searching databases of representative protein fragments using geometric scoring criteria. J Mol Biol. 1995;253(1):114–131. doi: 10.1006/jmbi.1995.0540. [DOI] [PubMed] [Google Scholar]
  • 11.Romano J. W., van Gemen B., Kievits T. NASBA: A novel, isothermal detection technology for qualitative and quantitative HIV-RNA measurements. Clin Lab Med. 1996;16(1):89–103. [PubMed] [Google Scholar]
  • 12.Taubenberger J. K., Reid A. H., Lourens R. M., et al. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437(7060):889–893. doi: 10.1038/nature04230. [DOI] [PubMed] [Google Scholar]
  • 13.Stevens J., Corper A. L., Basler C. F., et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science. 2004;303(5665):1866–1870. doi: 10.1126/science.1093373. [DOI] [PubMed] [Google Scholar]
  • 14.Wolfram S. A New Kind of Science. Champaign: Wolfram Media Inc; 2002. [Google Scholar]
  • 15.Stevens J., Blixt O., Tumpey T. M., et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312(5772):404–410. doi: 10.1126/science.1124513. [DOI] [PubMed] [Google Scholar]
  • 16.Andre D., Koza J. Advances in Genetic Programming 2. Cambridge: The MIT Press; 1996. [Google Scholar]
  • 17.Horimoto T., Kawaoka Y. Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev. 2001;14(1):129–149. doi: 10.1128/CMR.14.1.129-149.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Wallace R. G., HoDac H. M., Lathrop R. H., et al. A statistical phylogeography of influenza A H5N1. Proc Natl Acad Sci USA. 2007;104(11):4473–4478. doi: 10.1073/pnas.0700435104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
  • 20.Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 &OA resolution. Nature. 1981;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  • 21.Rosenthal P. B., Zhang X., Formanowski F., et al. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature. 1998;396(6706):92–96. doi: 10.1038/23974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Tumpey T. M., Garcia-Sastre A., Mikulasova A., et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA. 2002;99(21):13849–13854. doi: 10.1073/pnas.212519699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Viseshakul N., Thanawongnuwech R., Amonsin A., et al. The genome sequence analysis of H5N1 avian influenza A virus isolated from the outbreak among poultry populations in Thailand. Virology. 2004;328(2):169–176. doi: 10.1016/j.virol.2004.06.045. [DOI] [PubMed] [Google Scholar]
  • 24.Hoffmann E., Lipatov A. S., Webby R. J., et al. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci USA. 2005;102(36):12915–12920. doi: 10.1073/pnas.0506416102. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Science Bulletin = Kexue Tongbao are provided here courtesy of Nature Publishing Group

RESOURCES