Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1990;14(2):129–140. doi: 10.1007/BF00346553

Intraruminal administration of milk in the calf as a model for ruminal drinking: Morphological and enzymatical changes in the jejunal mucosa

A Van Weeren-Keverling Buisman 1, J M V M Mouwen 2, T Wensing 1, H J Breukink 1
PMCID: PMC7089113  PMID: 2161140

Abstract

In order to develop a calf model for studying the syndrome of ruminal drinking (RD) in veal calves, three dual-fistulated calves were used to test the effect of intraruminal administration of milk replacer on the jejunal mucosa. Biopsies of the proximal jejunal mucosa were taken through a jejunal fistula and the mucosal morphology and the activities of two brush border enzymes, lactase and alkaline phosphatase, were determined.

Means of villus length and brush border enzyme activities decreased during the period of intraruminal administration of milk. The hyperplastic villus atrophy in this model was similar to that found in chronic RD patients in previous studies. This could not be associated with isolation of pathogenic micro-organisms from the faeces and is probably the consequence of the intraruminal milk feeding procedure itself.

Clinical recovery from the signs of RD occurred rapidly after intraruminal administration of milk ceased and was followed by restoration of villus length and brush border enzyme activities 3–4 weeks later.

Keywords: calf, enzymes, jejunum, milk, morphology, ruminal drinking

References

  1. Batra H.V., Garg D.N. Occurrence of Yersinia, Serratia and Pseudomonas in health and gastrointestinal disturbances of men and cattle along with the detection of pigs and rats as their natural carriers. Indian Journal of Animal Science. 1987;57:639–646. [Google Scholar]
  2. Batt R.M., Hall E.J. Chronic enteropathies in the dog. Journal of Small Animal Practice. 1989;30:3–12. [Google Scholar]
  3. Benz G.W., Ernst J.V. Alkaline phosphatase activities in intestinal mucosa from calves infected with Cooperia punctata and Eimeria bovis. American Journal of Veterinary Research. 1976;37:895–899. [PubMed] [Google Scholar]
  4. Breukink H.J., Wensing Th., van Weeren-Keverling Buisman A., van Bruinessen-Kapsenberg E.G., de Visser N.A.P.C. Consequences of failure of the reticular groove reflex in veal calves fed milk replacer. The Veterinary Quarterly. 1988;10:126–135. doi: 10.1080/01652176.1988.9694159. [DOI] [PubMed] [Google Scholar]
  5. van Bruinessen-Kapsenberg E.G., Wensing Th., Breukink H.J. Indigestionen der Mastkälber infolge fehlenden Schlundrinnenreflexes. Tierärztliche Umschau. 1982;7:515–517. [Google Scholar]
  6. Coombe N.B., Smith R.H. Absorption of glucose and galactose and digestion and absorption of lactose by the preruminant calf. British Journal of Nutrition. 1973;30:331–344. doi: 10.1079/bjn19730037. [DOI] [PubMed] [Google Scholar]
  7. Dargel D., Hartmann H. Die Activität der β-Galaktosidase im Darmkanal von klinisch gesunden und durchfallkranken Kälbern sowie Ferkeln. Monatsheft für Veterinär Medizin. 1984;39:742–745. [Google Scholar]
  8. Hamstra S., van Haeringen H. Kalvermesterij. Diergeneeskundig Memorandum. 1977;24:269–324. [Google Scholar]
  9. Hoadley A.W., McCoy E. Some observations on the ecology of Pseudomonas aeruginosa and its occurrence in the intestinal tract of animals. The Cornell Veterinarian. 1968;58:354–363. [PubMed] [Google Scholar]
  10. Huber J.T., Jacobson N.L., Allen R.S. Digestive enzyme activities in the young calf. Journal of Dairy Science. 1961;44:1494–1501. [Google Scholar]
  11. Huber J.T., Rifkin R.J., Keith J.M. Effect of level of lactose upon lactase concentrations in the small intestines of young calves. Journal of Dairy Science. 1964;47:789–797. [Google Scholar]
  12. Landsverk T. Histochemical distribution of enzymes in the small intestine of young milk-fed calves. Acta Veterinaria Scandinavica. 1980;21:402–414. doi: 10.1186/BF03546873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Landsverk T. An enzyme histochemical investigation of the intestinal mucosa in diarrheic calves. Acta Veterinaria Scandinavica. 1981;22:449–458. doi: 10.1186/BF03548670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 1951;193:265–275. [PubMed] [Google Scholar]
  15. Matthews P.R.J., Fitzsimmons W.M. The incidence and distribution of Pseudomonas aeruginosa in the intestinal tract of calves. Research in Veterinary Science. 1964;5:171–174. [Google Scholar]
  16. Mouwen J.M.V.M. White scours in piglets. I. Stereomicroscopy of the mucosa of the small intestine. Veterinary Pathology. 1971;8:364–380. doi: 10.1177/030098587100800407. [DOI] [PubMed] [Google Scholar]
  17. Mouwen, J.M.V.M., 1972. White scours in piglets at three weeks of age. (PhD thesis, State University of Utrecht, The Netherlands)
  18. Nilsson P.O., Thörne H. Pseudomonas aeruginosa — en mikro-organism med ökad aktualitet. En översikt över pseudomonasinfectioner. Nordisk Veterinaermedicin. 1962;14:538–546. [Google Scholar]
  19. Stiglmair-Herb M.T., Popischil A., Hess R.G., Bachmann P.A., Balier G. Enzyme histochemistry of the small intestinal mucosa in experimental infections of calves with rotavirus and enterotoxigenic Escherichia coli. Veterinary Pathology. 1986;23:125–131. doi: 10.1177/030098588602300204. [DOI] [PubMed] [Google Scholar]
  20. Toofanian F., Kidder D.E., Hill F.W.G. The postnatal development of intestinal disaccharidases in the calf. Research in Veterinary Science. 1974;16:382–392. [PubMed] [Google Scholar]
  21. Torres Medina, A., Schlafer, D.H. and Mebus, C.A., 1985. Rotaviral and coronaviral diarrhea. Veterinary Clinics of North America, Symposium on calf diarrhea, 471–493 [DOI] [PMC free article] [PubMed]
  22. de Visser N.A.P.C., Breukink H.J. Pensdrinkers en kleischijters. Tijdschrift voor Diergeneeskunde. 1984;109:800–804. [PubMed] [Google Scholar]
  23. van der Waay D. Colonization resistance of the digestive tract as a major lead in the selection of antibiotics for therapy. In: van der Waay D., Verhoef J., editors. New criteria for antimicrobial therapy: maintenance of digestive tract colonization resistance; Amsterdam-Oxford: Excerpta Medica; 1979. pp. 271–280. [Google Scholar]
  24. van Weeren, A., Breukink, H.J., Wensing, Th. and Mouwen, J.M.V.M., 1986. Villus atrophy in ruminal drinkers. In: Proceedings of the Fourteenth World Congress on Diseases of Cattle, Dublin, Ireland, 1986, (World Association for Buiatrics) 1152–1156
  25. van Weeren-Keverling Buisman A., Noordhuizen-Stassen E.N., Breukink H.J., Wensing Th., Mouwen J.M.V.M. Villus atrophy in ruminal drinking calves and mucosal restoration after reconditioning. The Veterinary Quarterly. 1988;10:164–171. doi: 10.1080/01652176.1988.9694166. [DOI] [PubMed] [Google Scholar]
  26. van Weeren-Keverling Buisman A., Breukink H.J., van der Velden M.A. A simple and effective biopsy technique of the small intestine in the calf. Journal of Veterinary Medicine A. 1988;35:152–156. doi: 10.1111/j.1439-0442.1988.tb00018.x. [DOI] [PubMed] [Google Scholar]
  27. van Weeren-Keverling Buisman, A., Wensing, Th., van den Ingh, T.S.G.A.M. and Breukink, H.J., 1990. Intraruminal administration of milk in the calf as a model for ruminal drinking: Clinical aspects and biochemical and morphological changes in the rumen. Journal of Animal Physiology and Animal Nutrition (in press) [DOI] [PMC free article] [PubMed]
  28. Youanes Y.D., Herdt T.H. Changes in small intestinal morphology and flora associated with decreased energy digestibility in calves with naturally occurring diarrhea. American Journal of Veterinary Research. 1987;48:719–725. [PubMed] [Google Scholar]

Articles from Veterinary Research Communications are provided here courtesy of Nature Publishing Group

RESOURCES