Abstract
Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but the molecular mechanisms of their antiviral activity remain unclear. The review discusses the well-known RNases that possess established antiviral effects, including both intracellular RNases (RNase L, MCPIP1 protein, and eosinophil-associated RNases) and exogenous RNases (RNase A, BS-RNase, onconase, binase, and synthetic RNases). Attention is paid to two important, but not always obligatory, aspects of molecules of RNases that have antiviral properties, i.e., catalytic activity and ability to dimerize. The hypothetic scheme of virus elimination by exogenous RNases that reflects possible types of interaction of viruses and RNases with a cell is proposed. The evidence for RNases as classical components of immune defense and thus perspective agents for the development of new antiviral therapeutics is proposed.
Keywords: viruses, antiviral activity, RNase L, MCPIP1 protein, eosinophil-associated RNases, RNase A, BS-RNase, onconase, binase, synthetic RNase
Abbreviations
- MCPIP1
monocyte chemoattractant protein-induced protein 1
- ECP
eosinophil cationic protein
- EDN
eosinophil-derived neurotoxin
- ssRNA
single-stranded RNA
- dsRNA
double-stranded RNA
- siRNA
small interfering RNAs
Footnotes
Original Russian Text © O.N. Ilinskaya, R. Shah Mahmud, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 5, pp. 707–717.
References
- 1.Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog. Nucl. Acid Res. Mol. Biol. 2001;66:67–105. doi: 10.1016/S0079-6603(00)66027-0. [DOI] [PubMed] [Google Scholar]
- 2.Salganik RI, Batalina TA, Berdichevskaia LS, Mosolov AN. Inhibition of RNA synthesis and reproduction of tick-encephalitis virus under the influence of ribonuclease. Dokl. Akad. Nauk. SSSR. 1968;180:1473–1475. [PubMed] [Google Scholar]
- 3.Reunov AV, Lapshina LA, Nagorskaya VP, Elyakova LA. Effect of 1,3;1,6-β-D-glucan on infection of detached tobacco leaves with tobacco mosaic virus. J. Phytopathol. 1996;144:247–249. doi: 10.1111/j.1439-0434.1996.tb01524.x. [DOI] [Google Scholar]
- 4.Sangaev SS, Trifonova EA, Titov SE, Romanova AV, Kolodyazhnaya YaS, Komarova ML, Sapotskii MV, Malinovskii VI, Kochetov AV, Shumnyi VK. Effective expression of the gene encoding an extracellular ribonuclease of Zinnia elegans in the SR1 Nicotiana tabacum plants. Russ. J. Genet. 2007;43(7):831–833. doi: 10.1134/S1022795407070186. [DOI] [PubMed] [Google Scholar]
- 5.Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R, Fineran PC, Arcus VL. Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta. 2013;1829:523–531. doi: 10.1016/j.bbagrm.2013.02.007. [DOI] [PubMed] [Google Scholar]
- 6.Meineke B, Shuman S. Structure-function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC. Virology. 2012;427!:144–150. doi: 10.1016/j.virol.2012.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Malathi K, Dong B, Gale M, Jr., Silverman RH. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature Lett. 2007;448:816–819. doi: 10.1038/nature06042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Garvie CW, Vasanthavada K, Xiang Q. Mechanistic insights into RNase L through use of an MDMX-derived multi-functional protein domain. Biochim. Biophys. Acta. 2013;1834:1562–1571. doi: 10.1016/j.bbapap.2013.04.010. [DOI] [PubMed] [Google Scholar]
- 9.Michael P, Brabant D, Bleiblo F, Ramana CV, Rutherford M, Khurana S, Tai TC, Kumar A, Kumar A. Influenza A induced cellular signal transduction pathways. J. Thorac. Dis. 2013;5:S132–S141. doi: 10.3978/j.issn.2072-1439.2013.07.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Townsend HL, Jha BK, Han JQ, Maluf NK, Silverman RH, Barton DJ. A viral RNA competitively inhibits the antiviral endoribonuclease domain of RNase L. RNA. 2008;14:1026–1036. doi: 10.1261/rna.958908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Sorgeloos F, Jha BK, Silverman RH, Michiels T. Evasion of antiviral innate immunity by Theiler’s virus L* protein through direct inhibition of RNase L. PLoS Pathog. 2013;9:e1003474. doi: 10.1371/journal.ppat.1003474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Hall TM. Multiple modes of RNA recognition by zinc finger proteins. Curr. Opin. Struct. Biol. 2005;15:367–373. doi: 10.1016/j.sbi.2005.04.004. [DOI] [PubMed] [Google Scholar]
- 13.Muller S, Moller P, Bick MJ, Wurr S, Becker S, Gunther S, Kummerer BM. Inhibition of filovirus replication by the zinc finger antiviral protein. J. Virol. 2007;81:2391–2400. doi: 10.1128/JVI.01601-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Mino T, Mori T, Aoyama Y, Sera T. Gene- and protein-delivered zinc finger-staphylococcal nuclease hybrid for inhibition of DNA replication of human papillomavirus. PLoS ONE. 2013;8:e56633. doi: 10.1371/journal.pone.0056633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL. MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res. 2013;41:3314–3326. doi: 10.1093/nar/gkt019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K, Miyazono K. MCPIP1ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell. 2011;44:424–436. doi: 10.1016/j.molcel.2011.09.012. [DOI] [PubMed] [Google Scholar]
- 17.Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J. Leukoc. Biol. 2001;70:691–698. [PubMed] [Google Scholar]
- 18.Sikriwal D, Seth D, Parveen S, Malik A, Broor S, Batra JK. An insertion in loop L7 of human eosinophil-derived neurotoxin is crucial for its antiviral activity. J. Cell Biochem. 2012;113:3104–3112. doi: 10.1002/jcb.24187. [DOI] [PubMed] [Google Scholar]
- 19.Rosenberg HF. Ribonucleases, Nucleic Acids and Molecular Biology. Berlin: Springer-Verlag; 2011. [Google Scholar]
- 20.Rugeles MT, Trubey CM, Bedoya VI, Pinto LA, Oppenheim JJ, Rybak SM, Shearer GM. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS. 2003;17:481–486. doi: 10.1097/00002030-200303070-00002. [DOI] [PubMed] [Google Scholar]
- 21.Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT. Ribonucleases in HIV type 1 inhibition: Effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res. Hum. Retrovir. 2006;22:897–907. doi: 10.1089/aid.2006.22.897. [DOI] [PubMed] [Google Scholar]
- 22.Saxena SK, Gravell M, Wu YN, Mikulski SM, Shogen K, Ardelt W, Youle RJ. Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease. J. Biol. Chem. 1996;271:20783–20788. doi: 10.1074/jbc.271.34.20783. [DOI] [PubMed] [Google Scholar]
- 23.Saxena SK, Sirdeshmukh R, Ardelt W, Mikulski SM, Shogen K, Youle RJ. Entry into cells and selective degradation of tRNA by a cytotoxic member of the RNase A family. J. Biol. Chem. 2002;277:15142–15146. doi: 10.1074/jbc.M108115200. [DOI] [PubMed] [Google Scholar]
- 24.Lee YH, Wei CW, Wang JJ, Chiou CT. Rana catesbeiana ribonuclease inhibits Japanese encephalitis virus (JEV) replication and enhances apoptosis of JEV-infected BHK-21 cells. Antiviral Res. 2011;89:193–198. doi: 10.1016/j.antiviral.2011.01.002. [DOI] [PubMed] [Google Scholar]
- 25.Ardelt W., Saxena S.K. 2012. US Patent 20120121569 A1.
- 26.Glukhov BN, Jerusalimsky AP, Canter VM, Salganik RI. Ribonuclease treatment of tick-borne encephalitis. Arch. Neurol. 1976;33:598–603. doi: 10.1001/archneur.1976.00500090004002. [DOI] [PubMed] [Google Scholar]
- 27.Klyueva MA. Lekarstvennye sredstva: 5000 naimenovanii preparatov i ikh form (Svoistva, primenenie, vzaimodeistvie, protivopokazaniya) Moscow: LOKUS; 2001. [Google Scholar]
- 28.Zelepuga EA, Ponomareva RB, Kolikov VM, Pautov VD, Sheveleva TV, Medvedev ML, Tretyak TM, Terpelovskaya ON. Conjugates of pancreatic ribonuclease and ligand-free human serum albumin. Biomed. Khim. 2003;6:588–596. [PubMed] [Google Scholar]
- 29.Wang Z, Liu H, Yang SH, Wang T, Liu C, Cao YC. Nanoparticle-based artificial RNA silencing machinery for antiviral therapy. Proc. Natl. Acad. Sci. U. S. A. 2012;109:12387–12392. doi: 10.1073/pnas.1207766109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Makarov AA, Ilinskaya ON. Cytotoxic ribonucleases: Molecular weapons and their targets. FEBS Lett. 2003;540:15–20. doi: 10.1016/S0014-5793(03)00225-4. [DOI] [PubMed] [Google Scholar]
- 31.Sevcik J, Urbanikova L, Leland PA, Raines RT. X-ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity. J. Biol. Chem. 2002;277:47325–47330. doi: 10.1074/jbc.M208425200. [DOI] [PubMed] [Google Scholar]
- 32.Abaturov AE. RNaseA ribunucleases: Ancient components of nonspecific defense system of the respiratory tract. Teoretichna Meditsina. 2011;5:136–142. [Google Scholar]
- 33.Youle RJ, Wu YN, Mikulski SM, Shogen K, Hamilton RS, Newton D, D’Alessio G, Gravell M. RNase inhibition of human immunodeficiency virus infection of H9 cells. Proc. Natl. Acad. Sci. U. S. A. 1994;91:6012–6016. doi: 10.1073/pnas.91.13.6012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Schein CH, Haugg M, Benner SA. Interferon-gamma activates the cleavage of double-stranded RNA by bovine seminal ribonuclease. FEBS Lett. 1990;270:229–232. doi: 10.1016/0014-5793(90)81275-S. [DOI] [PubMed] [Google Scholar]
- 35.Lee JE, Raines RT. Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Biochemistry. 2005;44:15760–15767. doi: 10.1021/bi051668z. [DOI] [PubMed] [Google Scholar]
- 36.Gotte G, Libonati M. Oligomerization of ribonuclease A: Two novel three-dimensional domain-swapped tetramers. J. Biol. Chem. 2004;279:36670–36679. doi: 10.1074/jbc.M404780200. [DOI] [PubMed] [Google Scholar]
- 37.Gotte G, Donadelli M, Laurents DV, Vottariello F, Morbio M, Libonati M. Increase of RNase a N-terminus polarity or C-terminus apolarity changes the two domains’ propensity to swap and form the two dimeric conformers of the protein. Biochemistry. 2006;45:10795–10806. doi: 10.1021/bi060933t. [DOI] [PubMed] [Google Scholar]
- 38.Mitkevich VA, Schulga AA, Trofimov AA, Dorovatovskii PV, Goncharuk DA, Tkach EN, Makarov AA, Polyakov KM. Structure and functional studies of the ribonuclease binase Glu43Ala/Phe81Ala mutant. Acta Crystallogr. D. Biol. Crystallogr. 2013;69:991–996. doi: 10.1107/S0907444913004046. [DOI] [PubMed] [Google Scholar]
- 39.Shirshikov FV, Cherepnev GV, Ilinskaya ON, Kalacheva NV. A hydrophobic segment of some cytotoxic ribonucleases. Med. Hypotheses. 2013;81:328–334. doi: 10.1016/j.mehy.2013.04.006. [DOI] [PubMed] [Google Scholar]
- 40.Alekseeva II, Kurinenko BM, Penzikova GA, Oreshina MG. Antiviral activity of modified RNases. Antibiotiki. 1982;4:21–28. [PubMed] [Google Scholar]
- 41.Ulyanova V, Vershinina V, Ilinskaya O. Barnase and binase: twins with distinct fates. FEBS J. 2011;278:3633–3643. doi: 10.1111/j.1742-4658.2011.08294.x. [DOI] [PubMed] [Google Scholar]
- 42.Gribencha SV, Potselueva LA, Barinskii IF, Deev SM, Balandin TG, Leshchinskaya IB. Antiviral activity of Bacillus intermedius RNase in experiments on CDA mice infected with street rabies virus. Vopr. Virusol. 2004;49:38–41. [PubMed] [Google Scholar]
- 43.Gribencha SV, Potselueva LA, Barinskii IF, Deev SM, Balandin TG, Leshchinskaya IB. Protective activity of Bacillus intermedius RNase in guinea pigs and rabbits infected with street rabies virus. Vopr. Virusol. 2006;51:41–43. [PubMed] [Google Scholar]
- 44.Alekseeva II, Kurinenko BM, Kleiner GI, Skuya AZh, Penzikova GA, Oreshina MG. Comparative analysis of antiviral activity of pancreatic and microbial RNases. Antibiot. Med. Tekhnol. 1981;26:527–532. [PubMed] [Google Scholar]
- 45.Shneider MA, Shtil’bans EB, Kupriyanov-Ashin EG, Potselueva LA, Zaikonnikova IV, Kurinenko BM. Anti-flu effect of bacterial RNase in experiment, and pharmacokinetic rationale for the method of its application. Antibiot. Khimioterap. 1990;35:27–33. [PubMed] [Google Scholar]
- 46.Shah Mahmud R, Ilinskaya ON. Antiviral activity of binase against the pandemic influenza A (H1N1) virus. Acta Naturae. 2013;5:44–51. [PMC free article] [PubMed] [Google Scholar]
- 47.Ilinskaya ON, Zelenikhin PV, Petrushanko IY, Mitkevich VA, Prassolov VS, Makarov AA. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response. Biochem. Biophys. Res. Commun. 2007;361:1000–1005. doi: 10.1016/j.bbrc.2007.07.143. [DOI] [PubMed] [Google Scholar]
- 48.Kamble KD, Pinjare VS. Extra cellular ribonuclease production from Pseudomonas species. Asian J. Exp. Biol. Sci. 2012;3:810–815. [Google Scholar]
- 49.Zhou WW, Niu TG. Purification and some properties of an extracellular ribonuclease with antiviral activity against tobacco mosaic virus from Bacillus cereus. Biotechnol. Lett. 2009;31:101–105. doi: 10.1007/s10529-008-9831-1. [DOI] [PubMed] [Google Scholar]
- 50.Bastos JC, Kohn LK, Fantinatti-Garboggini F, Padilla MA, Flores EF, da Silva BP, de Menezes CB, Arns CW. Antiviral activity of Bacillus sp. isolated from the marine sponge Petromica citrina against bovine viral diarrhea virus, a surrogate model of the hepatitis C virus. Viruses. 2013;5:1219–1230. doi: 10.3390/v5051219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Mikhailova NA, Nagieva FG, Grin’ko OM, Zverev VV. Experimental study of antiviral activity of spore-forming bacteria Bacillus pumilus Pashkov. Zh. Mikrobiol. Epidemiol. Immuniobiol. 2010;2:69–74. [PubMed] [Google Scholar]
- 52.Zhdan NS, Kuznetsova IL, Vlasov AV, Sil’nikov VN, Zenkova MA, Vlasov VV. Artificial ribonucleases: 1. Synthesis and properties of conjugates containing an RNA-binding fragment with Lys residues and an RNA-hydrolyzing fragment with imidazole residue. Russ. J. Bioorg. Chem. 1999;25:639–647. [PubMed] [Google Scholar]
- 53.Zenkova MA, Vlasov AV, Konevets DA, Sil’nikov VN, Giege R, Vlasov VV. Chemical Ribonucleases: 2. Design and hydrolytic activity of the ribonuclease mimics on the basis of diazabicyclo[2.2.2]octane with a differing number of positive charges. Russ. J. Bioorg. Chem. 2000;26:610–615. [PubMed] [Google Scholar]
- 54.Fedorova AA, Azzami K, Ryabchikova EI, Spitsyna YE, Silnikov VN, Ritter W, Gross HJ, Tautz J, Vlassov VV, Beier H, Zenkova MA. Inactivation of a non-enveloped RNA virus by artificial ribonucleases: honey bees and acute bee paralysis virus as a new experimental model for in vivo antiviral activity assessment. Antiviral Res. 2011;91:267–277. doi: 10.1016/j.antiviral.2011.06.011. [DOI] [PubMed] [Google Scholar]
- 55.Fedorova AA, Goncharova EP, Ryabchikova EI, Vlasov VV, Zenkova MA. Novel amphiphilic compounds effectively inactivate the vaccinia virus. FEBS Lett. 2012;586:1669–1673. doi: 10.1016/j.febslet.2012.04.047. [DOI] [PubMed] [Google Scholar]
- 56.Niittymaki T, Kaukinen U, Virta P, Mikkola S, Lonnberg H. Preparation of azacrown-functionalized 2′-O-methyl oligoribonucleotides, potential artificial RNases. Bioconjug. Chem. 2004;15:174–184. doi: 10.1021/bc034166b. [DOI] [PubMed] [Google Scholar]
- 57.Bai Y, Sunkara N, Liu F. Targeting mRNAs by engineered sequence-specific RNase P ribozymes. Methods Mol. Biol. 2012;848:357–368. doi: 10.1007/978-1-61779-545-9_22. [DOI] [PubMed] [Google Scholar]
- 58.Olmo N, Turnay J, Gonzalez de Butitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction cell death via apoptosis. Eur. J. Biochem. 2001;268:2113–2123. doi: 10.1046/j.1432-1327.2001.02086.x. [DOI] [PubMed] [Google Scholar]
- 59.Haigis MC, Raines RT. Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J. Cell Sci. 2002;116:313–324. doi: 10.1242/jcs.00214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Bracale A, Spalletti-Cernia D, Mastronicola M, Castaldi F, Mannucci R, Nitsch L, D’Alessio G. Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease. Biochem. J. 2002;362:553–560. doi: 10.1042/0264-6021:3620553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Cabrera-Fuentes HA, Aslam M, Saffarzadeh M, Kolpakov A, Zelenikhin P, Preissner KT, Ilinskaya ON. Internalization of Bacillus intermedius ribonuclease (BINASE) induces human alveolar adenocarcinoma cell death. Toxicon. 2013;69:219–226. doi: 10.1016/j.toxicon.2013.03.015. [DOI] [PubMed] [Google Scholar]
- 62.Cabrera Fuentes HA, Kalacheva NV, Mukhametshina RT, Zelenichin PV, Kolpakov AI, Barreto G, Praissner KT, Il’inskaia ON. Binase penetration into alveolar epithelial cells does not induce cell death. Biomed Khim. 2012;58:272–280. doi: 10.18097/pbmc20125803272. [DOI] [PubMed] [Google Scholar]
- 63.Mitkevich VA, Makarov AA, Ilinskaya ON. Cell targets of antitumor ribonucleases. Mol. Biol. (Moscow). 2014;48:181–189. doi: 10.1134/S0026893314020137. [DOI] [PubMed] [Google Scholar]
- 64.Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: Strike and counter-strike. Nature Biotechnol. 2007;25:1435–1443. doi: 10.1038/nbt1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 2004;101:8676–8681. doi: 10.1073/pnas.0402486101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Barik S. siRNA for influenza therapy. Viruses. 2010;2:1448–1457. doi: 10.3390/v2071448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Truong N.P., Gu W., Prasadam I., Jia Z., Crawford R., Xiao Y., Monteiro M.J. 2013. An influenza virus-inspired polymer system for the timed release of siRNA. Nature Commun.4. doi 10.1038/ncomms2905 [DOI] [PubMed]
- 68.Qiao M, Zu LD, He XH, Shen RL, Wang QC, Liu MF. Onconase downregulates microRNA expression through targeting microRNA precursors. Cell Res. 2012;22:1199–1202. doi: 10.1038/cr.2012.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
