Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2017 Oct 9;60(12):1407–1415. doi: 10.1007/s11427-017-9151-1

Role of microbiota on lung homeostasis and diseases

Jian Wang 1,2,✉,#, Fengqi Li 1,#, Zhigang Tian 1,3,
PMCID: PMC7089139  PMID: 29019144

Abstract

The lungs, as a place of gas exchange, are continuously exposed to environmental stimuli, such as allergens, microbes, and pollutants. The development of the culture-independent technique for microbiological analysis, such as 16S rRNA sequencing, has uncovered that the lungs are not sterile and, in fact, colonized by diverse communities of microbiota. The function of intestinal microbiota in modulating mucosal homeostasis and defense has been widely studied; however, the potential function of lung microbiota in regulating immunity and homeostasis has just begun. Increasing evidence indicates the relevance of microbiota to lung homeostasis and disease. In this review, we describe the distribution and composition of microbiota in the respiratory system and discuss the potential function of lung microbiota in both health and acute/chronic lung disease. In addition, we also discuss the recent understanding of the gut-lung axis, because several studies have revealed that the immunological interaction among the gut, the lung, and the microbiota was involved in this issue.

Keywords: lung, microbiota, homeostasis, lung disease

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31400783, 91542000).

Footnotes

Contributed equally to this work

Contributor Information

Jian Wang, Email: ustcwj@mail.ustc.edu.cn.

Zhigang Tian, Email: tzg@ustc.edu.cn.

References

  1. Alegre M.L., Mannon R.B., Mannon P.J. The microbiota, the immune system and the allograft. Am J Transplant. 2014;14:1236–1248. doi: 10.1111/ajt.12760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrieta M.C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S., Kuzeljevic B., Gold M.J., Britton H.M., Lefebvre D.L., Subbarao P., Mandhane P., Becker A., McNagny K.M., Sears M.R., Kollmann T., Kollmann T., Mohn W.W., Turvey S.E., Finlay B.B. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7:307ra152–307ra152. doi: 10.1126/scitranslmed.aab2271. [DOI] [PubMed] [Google Scholar]
  3. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K., Kim S., Fritz J.V., Wilmes P., Ueha S., Matsushima K., Ohno H., Olle B., Sakaguchi S., Taniguchi T., Morita H., Hattori M., Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–236. doi: 10.1038/nature12331. [DOI] [PubMed] [Google Scholar]
  4. Bai H., Gao X., Zhao L., Peng Y., Yang J., Qiao S., Zhao H., Wang S., Fan Y.J., Joyee A.G., Yao Z., Yang X. Cell Mol Immunol. 2016. Respective IL-17A production by γδ T and Th17 cells and its implication in host defense against chlamydial lung infection. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bassis C.M., Erb-Downward J.R., Dickson R.P., Freeman C.M., Schmidt T.M., Young V.B., Beck J.M., Curtis J.L., Huffnagle G.B. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015;6:e00037. doi: 10.1128/mBio.00037-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beck J.M., Young V.B., Huffnagle G.B. The microbiome of the lung. Transl Res. 2012;160:258–266. doi: 10.1016/j.trsl.2012.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Belkaid Y., Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol. 2016;16:353–366. doi: 10.1038/nri.2016.48. [DOI] [PubMed] [Google Scholar]
  8. Bird L. Gut microbiota influences liver disease. Nat Rev Immunol. 2012;12:153. doi: 10.1038/nri3177. [DOI] [PubMed] [Google Scholar]
  9. Brubaker L., Wolfe A.J. The female urinary microbiota, urinary health and common urinary disorders. Ann Transl Med. 2017;5:34–34. doi: 10.21037/atm.2016.11.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15:55–63. doi: 10.1038/nrmicro.2016.142. [DOI] [PubMed] [Google Scholar]
  11. Charlson E.S., Bittinger K., Haas A.R., Fitzgerald A.S., Frank I., Yadav A., Bushman F.D., Collman R.G. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184:957–963. doi: 10.1164/rccm.201104-0655OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen L.W., Chen P.H., Hsu C.M. Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock. 2011;36:67–75. doi: 10.1097/SHK.0b013e3182184ee7. [DOI] [PubMed] [Google Scholar]
  13. Chung H., Kasper D.L. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol. 2010;22:455–460. doi: 10.1016/j.coi.2010.06.008. [DOI] [PubMed] [Google Scholar]
  14. Collard H.R., Moore B.B., Flaherty K.R., Brown K.K., Kaner R.J., King T.E., Lasky J.A., Loyd J.E., Noth I., Olman M.A., Raghu G., Roman J., Ryu J.H., Zisman D.A., Hunninghake G.W., Colby T.V., Egan J.J., Hansell D.M., Johkoh T., Kaminski N., Kim D.S., Kondoh Y., Lynch D.A., Müller-Quernheim J., Myers J.L., Nicholson A.G., Selman M., Toews G.B., Wells A.U., Martinez F.J., Martinez F.J. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–643. doi: 10.1164/rccm.200703-463PP. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cui L., Morris A., Huang L., Beck J.M., Twigg H.L., 3rd, von Mutius E., Ghedin E. The microbiome and the lung. Ann Am Thorac Soc. 2014;11(4):S227–S232. doi: 10.1513/AnnalsATS.201402-052PL. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dickson R.P., Erb-Downward J.R., Martinez F.J., Huffnagle G.B. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504. doi: 10.1146/annurev-physiol-021115-105238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ege M.J., Mayer M., Normand A.C., Genuneit J., Cookson W.O.C.M., Braun-Fahrländer C., Heederik D., Piarroux R., von Mutius E., von Mutius E. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–709. doi: 10.1056/NEJMoa1007302. [DOI] [PubMed] [Google Scholar]
  18. Folcik V.A., Garofalo M., Coleman J., Donegan J.J., Rabbani E., Suster S., Nuovo A., Magro C.M., Di Leva G., Nuovo G.J. Idiopathic pulmonary fibrosis is strongly associated with productive infection by herpesvirus saimiri. Mod Pathol. 2014;27:851–862. doi: 10.1038/modpathol.2013.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gallacher D.J., Kotecha S. Respiratory microbiome of newborn infants. Front Pediatr. 2016;4:10. doi: 10.3389/fped.2016.00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Garcia-Nuñez M., Millares L., Pomares X., Ferrari R., Pérez-Brocal V., Gallego M., Espasa M., Moya A., Monsó E. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52:4217–4223. doi: 10.1128/JCM.01967-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ghosh S., Hoselton S.A., Asbach S.V., Steffan B.N., Wanjara S.B., Dorsam G.P., Schuh J.M. B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol. 2015;12:202–212. doi: 10.1038/cmi.2014.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gill N., Wlodarska M., Finlay B.B. The future of mucosal immunology: studying an integrated system-wide organ. Nat Immunol. 2010;11:558–560. doi: 10.1038/ni0710-558. [DOI] [PubMed] [Google Scholar]
  23. Glenwright A.J., Pothula K.R., Bhamidimarri S.P., Chorev D.S., Baslé A., Firbank S.J., Zheng H., Robinson C.V., Winterhalter M., Kleinekathöfer U., Bolam D.N., van den Berg B. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature. 2017;541:407–411. doi: 10.1038/nature20828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gollwitzer E.S., Saglani S., Trompette A., Yadava K., Sherburn R., McCoy K.D., Nicod L.P., Lloyd C.M., Marsland B.J. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20:642–647. doi: 10.1038/nm.3568. [DOI] [PubMed] [Google Scholar]
  25. Guillot L., Medjane S., Le-Barillec K., Balloy V., Danel C., Chignard M., Si-Tahar M. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways. J Biol Chem. 2004;279:2712–2718. doi: 10.1074/jbc.M305790200. [DOI] [PubMed] [Google Scholar]
  26. Hagner S., Harb H., Zhao M., Stein K., Holst O., Ege M.J., Mayer M., Matthes J., Bauer J., von Mutius E., Renz H., Heine H., Pfefferle P.I., Garn H. Farm-derived Gram-positive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA-exposed mice. Allergy. 2013;68:322–329. doi: 10.1111/all.12094. [DOI] [PubMed] [Google Scholar]
  27. Han M.L.K., Zhou Y., Murray S., Tayob N., Noth I., Lama V.N., Moore B.B., White E.S., Flaherty K.R., Huffnagle G.B., Martinez F.J. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med. 2014;2:548–556. doi: 10.1016/S2213-2600(14)70069-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. He Y., Wen Q., Yao F., Xu D., Huang Y., Wang J. Gutlung axis: the microbial contributions and clinical implications. Crit Rev Microbiol. 2017;43:81–95. doi: 10.1080/1040841X.2016.1176988. [DOI] [PubMed] [Google Scholar]
  29. Hilty M., Burke C., Pedro H., Cardenas P., Bush A., Bossley C., Davies J., Ervine A., Poulter L., Pachter L., Moffatt M.F., Cookson W.O.C. Disordered microbial communities in asthmatic airways. PLoS ONE. 2010;5:e8578. doi: 10.1371/journal.pone.0008578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Honda K., Littman D.R. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75–84. doi: 10.1038/nature18848. [DOI] [PubMed] [Google Scholar]
  31. Hurley M.N., Ariff A.H.A., Bertenshaw C., Bhatt J., Smyth A.R. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J Cystic Fibrosis. 2012;11:288–292. doi: 10.1016/j.jcf.2012.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ichinohe T., Pang I.K., Kumamoto Y., Peaper D.R., Ho J.H., Murray T.S., Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108:5354–5359. doi: 10.1073/pnas.1019378108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Keely S., Talley N.J., Hansbro P.M. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012;5:7–18. doi: 10.1038/mi.2011.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kozakova H., Schwarzer M., Tuckova L., Srutkova D., Czarnowska E., Rosiak I., Hudcovic T., Schabussova I., Hermanova P., Zakostelska Z., Aleksandrzak-Piekarczyk T., Koryszewska-Baginska A., Tlaskalova-Hogenova H., Cukrowska B. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol. 2016;13:251–262. doi: 10.1038/cmi.2015.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M., Thornton E.E., Headley M.B., David T., Coughlin S.R., et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544:105–109. doi: 10.1038/nature21706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Li M.O., Flavell R.A. TGF-β: a master of all T cell trades. Cell. 2008;134:392–404. doi: 10.1016/j.cell.2008.07.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Liu Y., Marc Rhoads J. “LOCK”ing up allergic responses with a Polish probiotic. Cell Mol Immunol. 2016;13:263–264. doi: 10.1038/cmi.2015.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lloyd C.M., Hessel E.M. Functions of T cells in asthma: more than just TH2 cells. Nat Rev Immunol. 2010;10:838–848. doi: 10.1038/nri2870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lochner M., Bérard M., Sawa S., Hauer S., Gaboriau-Routhiau V., Fernandez T.D., Snel J., Bousso P., Cerf-Bensussan N., Eberl G. Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells. J Immunol. 2011;186:1531–1537. doi: 10.4049/jimmunol.1001723. [DOI] [PubMed] [Google Scholar]
  40. Lynch S.V. The lung microbiome and airway disease. Ann ATS. 2016;13:S462–S465. doi: 10.1513/AnnalsATS.201605-356AW. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Macfarlane G., Blackett K., Nakayama T., Steed H., Macfarlane S. The gut microbiota in inflammatory bowel disease. Curr Pharmaceut Design. 2009;15:1528–1536. doi: 10.2174/138161209788168146. [DOI] [PubMed] [Google Scholar]
  42. Man W.H., de Steenhuijsen Piters W.A.A., Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Micro. 2017;15:259–270. doi: 10.1038/nrmicro.2017.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Marri P.R., Stern D.A., Wright A.L., Billheimer D., Martinez F.D. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013;131:346–352. doi: 10.1016/j.jaci.2012.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Marsland B.J., Gollwitzer E.S. Host-microorganism interactions in lung diseases. Nat Rev Immunol. 2014;14:827–835. doi: 10.1038/nri3769. [DOI] [PubMed] [Google Scholar]
  45. Matsuoka K., Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47–55. doi: 10.1007/s00281-014-0454-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. McDermott M.R., Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol. 1979;122:1892–1898. [PubMed] [Google Scholar]
  47. Molyneaux P.L., Cox M.J., Willis-Owen S.A.G., Mallia P., Russell K.E., Russell A.M., Murphy E., Johnston S.L., Schwartz D.A., Wells A.U., Cookson W.O.C., Maher T.M., Moffatt M.F. The Role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:906–913. doi: 10.1164/rccm.201403-0541OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Morris A., Beck J.M., Schloss P.D., Campbell T.B., Crothers K., Curtis J.L., Flores S.C., Fontenot A.P., Ghedin E., Huang L., Jablonski K., Kleerup E., Lynch S.V., Sodergren E., Twigg H., Young V.B., Bassis C.M., Venkataraman A., Schmidt T.M., Weinstock G.M., Weinstock G.M. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187:1067–1075. doi: 10.1164/rccm.201210-1913OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nakanishi Y., Sato T., Ohteki T. Commensal Gram-positive bacteria initiates colitis by inducing monocyte/macrophage mobilization. Mucosal Immunol. 2015;8:152–160. doi: 10.1038/mi.2014.53. [DOI] [PubMed] [Google Scholar]
  50. Nembrini C., Sichelstiel A., Kisielow J., Kurrer M., Kopf M., Marsland B.J. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism. Thorax. 2011;66:755–763. doi: 10.1136/thx.2010.152512. [DOI] [PubMed] [Google Scholar]
  51. O’Dwyer D.N., Armstrong M.E., Trujillo G., Cooke G., Keane M.P., Fallon P.G., Simpson A.J., Millar A.B., McGrath E.E., Whyte M.K., Hirani N., Hogaboam C.M., Donnelly S.C. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2013;188:1442–1450. doi: 10.1164/rccm.201304-0760OC. [DOI] [PubMed] [Google Scholar]
  52. O’Dwyer D.N., Dickson R.P., Moore B.B. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol. 2016;196:4839–4847. doi: 10.4049/jimmunol.1600279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Ramsey B.W. Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med. 1996;335:179–188. doi: 10.1056/NEJM199607183350307. [DOI] [PubMed] [Google Scholar]
  54. Remot A., Descamps D., Noordine M.L., Boukadiri A., Mathieu E., Robert V., Riffault S., Lambrecht B., Langella P., Hammad H., Thomas M. Bacteria isolated from lung modulate asthma susceptibility in mice. ISME J. 2017;11:1061–1074. doi: 10.1038/ismej.2016.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rooks M.G., Garrett W.S. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–352. doi: 10.1038/nri.2016.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323. doi: 10.1038/nri2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Saeedi P., Salimian J., Ahmadi A., Imani Fooladi A.A. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhal Toxicol. 2015;27:451–461. doi: 10.3109/08958378.2015.1070220. [DOI] [PubMed] [Google Scholar]
  58. Schleiermacher D., Hoffmann J.C. Pulmonary abnormalities in inflammatory bowel disease. J Crohn’s Colitis. 2007;1:61–69. doi: 10.1016/j.crohns.2007.08.009. [DOI] [PubMed] [Google Scholar]
  59. Segal L.N., Blaser M.J. A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. 2014;11(1):S21–S27. doi: 10.1513/AnnalsATS.201306-189MG. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Shaw M.H., Kamada N., Kim Y.G., Núñez G. Microbiotainduced IL-1β, but not IL-6, is critical for the development of steady-state Th17 cells in the intestine. J Exp Med. 2012;209:251–258. doi: 10.1084/jem.20111703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Shekhar S., Peng Y., Wang S., Yang X. Cell Mol Immunol. 2017. CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11bhi LDCs. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P., Jin D.Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 2014;11:141–149. doi: 10.1038/cmi.2013.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Smith A.L., Fiel S.B., Mayer-Hamblett N., Ramsey B., Burns J.L. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration. Chest. 2003;123:1495–1502. doi: 10.1378/chest.123.5.1495. [DOI] [PubMed] [Google Scholar]
  64. Snelgrove R.J., Godlee A., Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol. 2011;32:328–334. doi: 10.1016/j.it.2011.04.006. [DOI] [PubMed] [Google Scholar]
  65. Song X., He X., Li X., Qian Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol. 2016;13:418–431. doi: 10.1038/cmi.2015.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Stenbit A.E., Flume P.A. Pulmonary exacerbations in cystic fibrosis. Curr Opin Pulm Med. 2011;17:442–447. doi: 10.1097/MCP.0b013e32834b8c04. [DOI] [PubMed] [Google Scholar]
  67. Su C., Lei L., Duan Y., Zhang K.Q., Yang J. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol. 2012;93:993–1003. doi: 10.1007/s00253-011-3800-7. [DOI] [PubMed] [Google Scholar]
  68. Sze M.A., Abbasi M., Hogg J.C., Sin D.D. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD GOLD 2. PLoS ONE. 2014;9:e110351. doi: 10.1371/journal.pone.0110351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Tamburini S., Clemente J.C. Gut microbiota: neonatal gut microbiota induces lung immunity against pneumonia. Nat Rev Gastroenterol Hepatol. 2017;14:263–264. doi: 10.1038/nrgastro.2017.34. [DOI] [PubMed] [Google Scholar]
  70. Tan D.B.A., Amran F.S., Teo T.H., Price P., Moodley Y.P. Levels of CMV-reactive antibodies correlate with the induction of CD28null T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD) Cell Mol Immunol. 2016;13:551–553. doi: 10.1038/cmi.2015.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Tan D.B.A., Fernandez S., Price P., French M.A., Thompson P.J., Moodley Y.P. Impaired CTLA-4 responses in COPD are associated with systemic inflammation. Cell Mol Immunol. 2014;11:606–608. doi: 10.1038/cmi.2014.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Taylor S.L., Wesselingh S., Rogers G.B. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol. 2016;18:652–662. doi: 10.1111/cmi.12589. [DOI] [PubMed] [Google Scholar]
  73. Thepen T., Kraal G., Holt P.G. The role of alveolar macrophages in regulation of lung inflammation. Ann New York Acad Sci. 1994;725:200–206. doi: 10.1111/j.1749-6632.1994.tb39802.x. [DOI] [PubMed] [Google Scholar]
  74. Tian Z., Cao X., Chen Y., Lyu Q. Regional immunity in tissue homeostasis and diseases. Sci China Life Sci. 2016;59:1205–1209. doi: 10.1007/s11427-016-0351-y. [DOI] [PubMed] [Google Scholar]
  75. Trompette A., Gollwitzer E.S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-Bru C., Blanchard C., Junt T., Nicod L.P., Harris N.L., Marsland B.J. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–166. doi: 10.1038/nm.3444. [DOI] [PubMed] [Google Scholar]
  76. Vital M., Harkema J.R., Rizzo M., Tiedje J., Brandenberger C. Alterations of the murine gut microbiome with age and allergic airway disease. J Immunol Res. 2015;2015:892568. doi: 10.1155/2015/892568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Wang J., Li F., Sun R., Gao X., Wei H., Li L.J., Tian Z. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun. 2013;4:2106. doi: 10.1038/ncomms3106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Wang J., Li F., Wei H., Lian Z.X., Sun R., Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota- mediated Th17 cell-dependent inflammation. J Exp Med. 2014;211:2397–2410. doi: 10.1084/jem.20140625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Wang J., Tian Z. How lung infection leads to gut injury. Oncotarget. 2015;6:42394–42395. doi: 10.18632/oncotarget.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Wissinger E., Goulding J., Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol. 2009;21:147–155. doi: 10.1016/j.smim.2009.01.005. [DOI] [PubMed] [Google Scholar]
  81. Wu D., Hou C., Li Y., Zhao Z., Liu J., Lu X., Shang X., Xin Y. Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med. 2014;14:179. doi: 10.1186/1471-2466-14-179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Young R.P., Hopkins R.J., Marsland B. The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2016;54:161–169. doi: 10.1165/rcmb.2015-0250PS. [DOI] [PubMed] [Google Scholar]
  83. Zhang Y., Liang C. Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci. 2016;59:1210–1217. doi: 10.1007/s11427-016-0325-6. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES