Summary
Acinar cells have been difficult to maintain in primary or secondary cultures over extended periods of time. The most successful monolayer culture system reported to date requires basement membrane substrates. We report here a technique for culture of rat parotid acinar cells which does not rely upon basement membrane supports for maintenance and growth. The procedure involves gland excision, treatment to chelate metal ions, enzymatic digestion with collagenases and hyaluronidase, removal of fat and red blood cells by gravimetric separation, and nylon mesh filtration to yield a homogeneous suspension of small aggregates and single cells. The cells were examined for: a) morphology, identity, and growth; b) macromolecular synthesis; and c) secretory output. They were healthy, peroxidase positive, and growing for up to 10 d. Protein synthesis increased from the point of cell layer formation at 3 to 4 d, through 10 d, while DNA synthesis decreased. As in other studies, amylase secretion fell sharply between 2 and 4 d in culture and remained low. Although previous studies indicated that the initial isolation protocol left these acinar cells unable to thrive in monolayer culture except in the presence of basement membrane substrates, the modified technique reported herein allows these cells to attach, spread, and grow on a wide variety of commerically available plasticware. this method lends itself readily to long-term analysis of rat parotid acinar cell metabolism without the complications of dedifferentiation, cell loss through culture manipulation common in suspension cultures, or complex interactions between bioactive supports and cell surfaces.
Key words: acinar cell culture, parotid gland, basement membrane
Footnotes
The authors extent their gratitude to Dr. Constance Oliver for her constructive discussions regarding her culture methods. Our gratitude also goes to Ms. Nancy McGee for assistance in preparation of electron micrographs and Ms. Dianne Lovoy in preparation of the manuscript. This work was supported by grants 7RR 05300-25 and DE 07076 from The National Institute of Dental Research, Bethesda, MD.
References
- 1.Batzri S., Selinger Z. Enzyme secretion mediated by epinephrine beta-receptor in rat parotid slices. Factors governing efficiency of the process. J. Biol. Chem. 1973;248:356–360. [PubMed] [Google Scholar]
- 2.Baum B. J., Ito H., Roth G. S. Adrenoreceptors and the regulation of salivary gland physiology. In: Kunos G., editor. Adrenoreceptors and catacholamine action-partB. New York, NY: Wiley & Sons; 1983. pp. 265–294. [Google Scholar]
- 3.Bennick A. Calivary proline-rich proteins. Mol. Cell. Biochem. 1983;45:83–99. doi: 10.1007/BF00223503. [DOI] [PubMed] [Google Scholar]
- 4.Bissell D. M., Arenson D. M., Maher J. J., et al. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clin. Invest. 1987;79:801–812. doi: 10.1172/JCI112887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- 6.Brannon P. M., Orrison B. M., Kretchmer N. Primary cultures of rat pancreatic acinar cells in serum-free medium. In Vitro Cell. Dev Biol. 1985;21:6–14. doi: 10.1007/BF02620907. [DOI] [PubMed] [Google Scholar]
- 7.Butcher F. R., Putney J. W. Regulation of parotid gland function by cyclic nucleotides and calcium. Adv. Cyclic Nucleotide Res. 1980;13:215–249. [PubMed] [Google Scholar]
- 8.Butler W. T., Bhown M., DiMuzio M. T., et al. Noncollagenous proteins of dentin. Isolation and partial characterization of rat dentin proteins and proteoglycans using a three-step preparative method. Collagen Res. 1981;1:187–199. doi: 10.1016/s0174-173x(81)80019-2. [DOI] [PubMed] [Google Scholar]
- 9.Cerriotti G. A. Microchemical determination of desoxyribonucleic acid. J. Biol. Chem. 1952;198:297–303. [PubMed] [Google Scholar]
- 10.Ceska M., Brown B., Birath K. Ranges of α-amylase activities in human serum and urine and correlations with some other α-amylase methods. Clin. Chim. Acta. 1969;26:445–453. doi: 10.1016/0009-8981(69)90072-2. [DOI] [PubMed] [Google Scholar]
- 11.Ceska M., Hultman E., Ingelman B. G-A. A new method for determination of α-amylase. Experimentia. 1969;25:555–556. doi: 10.1007/BF01900818. [DOI] [PubMed] [Google Scholar]
- 12.Ceska M., Kirath K., Brown B. A new and rapid method for the clinical determination of α-amylase activities in human serum and urine. Optimal conditions. Clin. Chim. Acta. 1969;26:437–444. doi: 10.1016/0009-8981(69)90071-0. [DOI] [PubMed] [Google Scholar]
- 13.Emerman J. T., Enami J., Pitelka D. R., et al. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. USA. 1977;74:4466–4470. doi: 10.1073/pnas.74.10.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Fahimi H. D. Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes) J. Cell Biol. 1969;43:275–288. doi: 10.1083/jcb.43.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Fritz M. E., LaVeau P., Nahmias A. J., et al. Primary cultures of feline acinar cells: dissociation, culturing, and viral infection. Am. J. Physiol. 1980;239(2):G288–G294. doi: 10.1152/ajpgi.1980.239.4.G288. [DOI] [PubMed] [Google Scholar]
- 16.Halliburton I. W., Thomson R. Y. Chemical aspects of compensatory renal hypertrophy. Cancer Res. 1965;25:1882–1887. [PubMed] [Google Scholar]
- 17.Johnson D. A. Changes in rat parotid salivary proteins associated with liquid diet-induced gland atrophy and isoproterenol-induced gland enlargement. Archs. Oral Biol. 1984;29:215–221. doi: 10.1016/0003-9969(84)90058-X. [DOI] [PubMed] [Google Scholar]
- 18.Kaplow L. S. Simplified myeloperoxidase stain using benzidine dihydrochloride. Blood. 1965;26:215–219. [PubMed] [Google Scholar]
- 19.Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- 20.Liem H. H., Cardenas F., Tavassoli M., et al. Quantitative determination of hemoglobin and cytochemical staining for peroxidase using 3,3′,5,5′-tetramethylbenzidine dihydrochloride, a safe substitute for benzidine. Anal. Biochem. 1979;98:388–393. doi: 10.1016/0003-2697(79)90157-X. [DOI] [PubMed] [Google Scholar]
- 21.Lucas D. R. The effect of hydrocortisone, oxygen tension and other factors on the survival of the submandibular, sublingual, parotid and exorbital lacrimal glands in organ culture. Exp. Cell Res. 1969;55:229–242. doi: 10.1016/0014-4827(69)90485-6. [DOI] [PubMed] [Google Scholar]
- 22.Majack R. A., Bornstein P. Heparin and related glycosaminoglycans modulate the secretory phenotype of vascular smooth muscle cells. J. Cell Biol. 1984;99:1688–1695. doi: 10.1083/jcb.99.5.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Mangos J. A., McSherry N. R., Butcher R., et al. Dispersed rat parotid acinar cells. I. Morphological and functional characterization. Am. J. Physiol. 1975;229:553–559. doi: 10.1152/ajplegacy.1975.229.3.553. [DOI] [PubMed] [Google Scholar]
- 24.Månsson-Rahemtulla B., Baldone D. C., Pruitt K. M., et al. Specific assays for peroxidases in human saliva. Archs. Oral Biol. 1986;31:661–668. doi: 10.1016/0003-9969(86)90095-6. [DOI] [PubMed] [Google Scholar]
- 25.Månsson-Rahemtulla B., Rahemtulla F., Baldone D. C., et al. Purification and characterization of human salivary peroxidase. Biochemistry. 1988;27:233–239. doi: 10.1021/bi00401a035. [DOI] [PubMed] [Google Scholar]
- 26.Nikiforuk G. Saliva and dental caries. In: Nikiforuk G., editor. Understanding dental caries 1. Etiology and mechanisms. Basic and clinical aspects. Basel: Karger; 1985. pp. 236–260. [Google Scholar]
- 27.Oliver C. Isolation and maintenance of differentiated exocrine gland acinar cellsin vitro. In Vitro. 1980;16:297–305. doi: 10.1007/BF02618335. [DOI] [PubMed] [Google Scholar]
- 28.Oliver C., Waters J. F., Tolbert C. L., et al. Growth of exocrine acinar cells on a reconstituted basement membrane gel. In Vitro Cell. Dev. Biol. 1987;23:465–473. doi: 10.1007/BF02628416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Putney J. W., Van de Walle C. M., Wheeler C. S. Binding of125I-physaelamin to rat parotid cells. J. Physiol. (Lond) 1980;301:205–219. doi: 10.1113/jphysiol.1980.sp013199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Putney J. W., Van de Walle C. M. The relationship between muscarinic receptor binding and ion movements in rat parotid cells. J. Physiol. (Lond) 1980;299:521–531. doi: 10.1113/jphysiol.1980.sp013140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Rahemtulla F., Moorer C. M., Wille J. J. Biochemical and immunological studies of proteoglycans from human gingival fibroblasts. J. Dent. Res. 1989;68:362–362. [Google Scholar]
- 32.Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal. Biochem. 1981;116:53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
- 33.Reddi A. H. Extracellular matrix and development. In: Piez K. A., Reddi A. H., editors. Extracellular matrix biochemistry. New York: Elsevier; 1984. pp. 375–412. [Google Scholar]
- 34.Redman R. S. The development of the salivary glands. In: Sreebny L. M., editor. The salivary system. Boca Raton, FL: CRC Press; 1987. pp. 1–20. [Google Scholar]
- 35.Redman R. S., Quissell D. O., Barzen K. A. Effects of dexamethasone, epidermal growth factor, and retinoic acid on rat submandibular acinar-intercalated duct complexes in primary culture. In Vitro Cell. Dev. Biol. 1976;24:734–742. doi: 10.1007/BF02623642. [DOI] [PubMed] [Google Scholar]
- 36.Reynolds E. S. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 1963;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Shindler J. S., Childs R. E., Bardsley W. G. Peroxidase from human cervical mucus. Eur. J. Biochem. 1976;65:325–331. doi: 10.1111/j.1432-1033.1976.tb10345.x. [DOI] [PubMed] [Google Scholar]
- 38.Tenovuo J. O. The peroxidase system in human secretions. In: Pruitt K. M., Tenuvuo J. O., editors. The lactoperoxidase system: chemistry and biological significance. New York: Marcel Dekker; 1985. pp. 101–122. [Google Scholar]
- 39.Tenovuo J., Pruitt K. M. Relationship of the human salivary peroxidase system to oral health. J. Oral Pathol. 1984;13:573–584. doi: 10.1111/j.1600-0714.1984.tb01459.x. [DOI] [PubMed] [Google Scholar]
- 40.Williams J. A., Korc M., Dorner R. L. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am. J. Physiol. 1978;235:E517–E524. doi: 10.1152/ajpendo.1978.235.5.E517. [DOI] [PubMed] [Google Scholar]
- 41.Williams M. A., Cope G. H., Pattern M. K. A system for the study of zymogen granule genesis and discharge in rabbit parotid gland tissuein vitro. J. Anat. 1973;115:141–142. [PMC free article] [PubMed] [Google Scholar]