Abstract
Currently, a number of structurally and functionally different thermosensitive elements, such as structurally and functionally different RNA thermometers, for controlling a variety of biological processes in bacteria, including virulence are known. These well-known RNA thermometers are structures, whether matched or mismatched, which are represented by either a single stretched hairpin structure or a few hairpins. Based on computer and thermodynamic analyses of 25 isolates of Salmonella enterica with complete genome, we have developed an algorithm and criteria to search for potential RNA thermometers, which will enable us to undertake a future search for potential riboswitches in the genomes of other socially significant pathogens. In addition to the well-known 4U RNA thermometer, another four hairpin-loop structures have been identified in S. enterica as new potential RNA thermometers and two of them are localized in 5′-UTR of virulence regulators gltB and yaeQ. They are highly conserved noncanonical structures and correspond to the necessary and sufficient conditions for forming RNA thermometers, since they are found in each of the 25 S. enterica genome isolates. We analyzed the thermosensitive motif in the pXO1 plasmid of Bacillus anthracis—an anthrax-causative pathogen—and visualized matched hairpins that form a cruciform structure in pUC8 supercoiled plasmid by atomic force microscopy.
Keywords: riboswitch, RNA thermometer, Shine-Dalgarno sequence, hairpin-loop structure, Salmonella enterica, atomic force microscopy (AFM)
Footnotes
Original Ukrainian Text © O.Yu. Limanskaya, L.A. Murtazaeva, A.P. Limanskii, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 5, pp. 12–21.
References
- 1.Doudna J, Cech T. The chemical repertoire of natural ribozymes. Nature. 2002;418(6894):222–228. doi: 10.1038/418222a. [DOI] [PubMed] [Google Scholar]
- 2.Watson P, Fedor M. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat. Struct. Mol. Biol. 2011;18(3):359–363. doi: 10.1038/nsmb.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Narberhaus F, Vogel J. Regulatory RNAs in prokaryotes: here, there and everywhere. Mol. Microbiol. 2009;74(2):261–269. doi: 10.1111/j.1365-2958.2009.06869.x. [DOI] [PubMed] [Google Scholar]
- 4.Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol. Life Sci. 2009;66(16):2661–2676. doi: 10.1007/s00018-009-0041-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Morita MT. Translational induction of heat shock transcription factor r32: evidence for a built-in RNA thermosensor. Genes Dev. 1999;13(6):655–665. doi: 10.1101/gad.13.6.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lybecker MC, Samuels DS. Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol. Microbiol. 2007;64(4):1075–1089. doi: 10.1111/j.1365-2958.2007.05716.x. [DOI] [PubMed] [Google Scholar]
- 7.Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. RNA thermometers are common in alpha- and gamma-proteobacteria. Biol. Chem. 2005;386(12):1279–1286. doi: 10.1515/BC.2005.145. [DOI] [PubMed] [Google Scholar]
- 8.Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. FourU: a novel type of RNA thermometer in Salmonella. Mol. Microbiol. 2007;65(2):413–424. doi: 10.1111/j.1365-2958.2007.05794.x. [DOI] [PubMed] [Google Scholar]
- 9.Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J. Bacteriol. 1993;175(24):7901–7909. doi: 10.1128/jb.175.24.7901-7909.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Waldminghaus T, Gaubig LC, Narberhaus F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol. Genet. Genom. 2007;278:555–564. doi: 10.1007/s00438-007-0272-7. [DOI] [PubMed] [Google Scholar]
- 11.Nucleic Acids Res. 2008. [DOI] [PMC free article] [PubMed]
- 12.Wieland M, Hartig JS. RNA quadruplex-based modulation of gene expression. Chem. Biol. 2007;14(7):757–763. doi: 10.1016/j.chembiol.2007.06.005. [DOI] [PubMed] [Google Scholar]
- 13.UNAFold: software for nucleic acid folding and hybridization. http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi [DOI] [PubMed]
- 14.Brodskii LI, Drachev AL, Tatuzov RL, Chumakov KM. The software package for biopolymer sequence analysis: GeneBee. Biopolym. Cell. 1991;7:10–14. [Google Scholar]
- 15.Limanskaya O, Limanskii A. Imaging compaction of single supercoiled DNA molecules by atomic force microscopy. General Physiol. Biophys. 2008;27(4):322–337. [PubMed] [Google Scholar]
- 16.Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. Biol. Chem. 2005. RNA thermometers are common in α- and γ-proteobacteria; pp. 1279–1286. [DOI] [PubMed] [Google Scholar]
- 17.Spirin AS. Molekulyarnaya biologiya. Struktura ribosomy i biosintez belka. Moscow: Vyssh. shk.; 1986. [Google Scholar]
- 18.Chowdhury S, Maris C, Allain FH, Narberhaus F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 2006;25(11):2487–2497. doi: 10.1038/sj.emboj.7601128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lilley D. Hairpin-loop formation by inverted repeats in supercoiled DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 1980;77(11):6468–6472. doi: 10.1073/pnas.77.11.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Sinden R, Pettijohn D. Cruciform transitions in DNA. J. Biol. Chem. 1984;259(10):6593–6600. [PubMed] [Google Scholar]
- 21.Lyamichev V, Panyutin I, Mirkin S. The absence of cruciform structures from pAO3 plasmid DNA in vivo. J. Biomol. Struct. Dyn. 1984;2(2):291–301. doi: 10.1080/07391102.1984.10507568. [DOI] [PubMed] [Google Scholar]
- 22.Bevilacqua PC, Blose JM. Structures, kinetics, thermodynamics and biological functions of RNA hairpins. Ann. Rev. Phys. Chem. 2008;58:79–103. doi: 10.1146/annurev.physchem.59.032607.093743. [DOI] [PubMed] [Google Scholar]
- 23.Cantor Ch, Schimmel P. Biophysical Chemistry, Part III: The Behavior of Biological Macromolecules. New York: Freeman; 1980. [Google Scholar]
- 24.Antao VP, Tinoco I. Ghermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Panyutin I, Lyamichev V, Lyubchenko Y. A sharp structural transition in pAO3 plasmid DNA caused by increased superhelix density. FEBS Lett. 1982;148(2):297–301. doi: 10.1016/0014-5793(82)80828-4. [DOI] [PubMed] [Google Scholar]
- 26.Panyutin I, Klishko V, Lyamichev V. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA. J. Biomol. Struct. Dyn. 1984;1(4):1311–1324. doi: 10.1080/07391102.1984.10507522. [DOI] [PubMed] [Google Scholar]
- 27.Zarudnaya M, Potyagailo A, Govorun D. Conserved structural motifs in the 3′ untranslated region of genomic RNA of SARS-CoV virus. Biopolym. Cell. 2003;19(3):298–303. doi: 10.7124/bc.000661. [DOI] [Google Scholar]
- 28.Limanskii AP. Visualization of cruciform structure in supercoiled DNA by atomic force microscopy. Biophysics. 2000;45(6):1007–1010. [PubMed] [Google Scholar]
- 29.De Smit MH, van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. U.S.A. 1990;87:7668–7672. doi: 10.1073/pnas.87.19.7668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Rychlik W, Spencer WJ, Rhoads RE. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 1990;18(21):6409–6417. doi: 10.1093/nar/18.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Limanskaya OYu, Limanskii AP. Imaging of T7 RNA polymerase elongation complexes by atomic force microscopy. Mol. Biol. (Moscow) 2008;42(3):469–477. doi: 10.1134/S0026893308030175. [DOI] [PubMed] [Google Scholar]
- 32.Limanskaya LA, Limanskii AP. S-DNA, over-supercoiled DNA with a 1.94- to 2.19-Å rise per base pair. Mol. Biol. (Moscow) 2006;40(1):107–120. doi: 10.1134/S0026893306010158. [DOI] [PubMed] [Google Scholar]
- 33.Limanskaya LA, Limanskii AP. Compaction of single supercoiled DNA molecules adsorbed onto amino mica. Russ. J. Bioorg. Chem. 2006;32(5):444–459. doi: 10.1134/S1068162006050074. [DOI] [PubMed] [Google Scholar]
- 34.Vicari D, Artsimovitch I. Virulence regulators RfaH and YaeQ do not operate in the same pathway. Mol. Genet. Genom. 2004;272(5):489–496. doi: 10.1007/s00438-004-1065-x. [DOI] [PubMed] [Google Scholar]
- 35.Johansson J, Mandin P, Renzini A, et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell. 2002;10:551–561. doi: 10.1016/S0092-8674(02)00905-4. [DOI] [PubMed] [Google Scholar]
- 36.Lu Z, Turner D, Mathews D. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation. Nucleic Acids Res. 2006;34(17):4912–4924. doi: 10.1093/nar/gkl472. [DOI] [PMC free article] [PubMed] [Google Scholar]
