Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2003;12(6):683–691. doi: 10.1023/B:TRAG.0000005114.23991.bc

Expression of the B Subunit of E. coli Heat-labile Enterotoxin in the Chloroplasts of Plants and its Characterization

Tae-Jin Kang 1, Nguyen-Hoang Loc 2, Mi-Ok Jang 2, Yong-Suk Jang 2, Young-Sook Kim 3, Jo-Eun Seo 4, Moon-Sik Yang 2,
PMCID: PMC7089190  PMID: 14713197

Abstract

Transgenic chloroplasts have become attractive systems for heterologous gene expressions because of unique advantages. Here, we report a feasibility study for producing the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (LTB) via chloroplast transformation of tobacco. Stable site-specific integration of the LTB gene into chloroplast genome was confirmed by PCR and genomic Southern blot analysis in transformed plants. Immunoblot analysis indicated that plant-derived LTB protein was oligomeric, and dissociated after boiling. Pentameric LTB molecules were the dominant molecular species in LTB isolated from transgenic tobacco leaf tissues. The amount of LTB protein detected in transplastomic tobacco leaf was approximately 2.5% of the total soluble plant protein, approximately 250-fold higher than in plants generated via nuclear transformation. The GM1–ELISA binding assay indicated that chloroplast-synthesized LTB protein bound to GM1-ganglioside receptors. LTB protein with biochemical properties identical to native LTB protein in the chloroplast of edible plants opens the way for inexpensive, safe, and effective plant-based edible vaccines for humans and animals.

Keywords: B subunit of E. coli heat-labile enterotoxin (LTB), chloroplast transformation, edible vaccine, homologous recombination, homoplastomy

References

  1. Bock R. Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001;312:425–438. doi: 10.1006/jmbi.2001.4960. [DOI] [PubMed] [Google Scholar]
  2. Chikwamba R, Cunnick J, Hathaway D, McMurray J, Mason H, Wang K. A functional antigen in a practical crop: LTB producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT) Transgenic Res. 2002;11:479–493. doi: 10.1023/a:1020393426750. [DOI] [PubMed] [Google Scholar]
  3. Clements JD, Finkelstein RA. Immunological crossreactivity between a heat-labile enterotoxin(s) of Escherichia coli and subunits of Vibrio chorelae enterotoxin. Infect Immun. 1978;21:1036–1039. doi: 10.1128/iai.21.3.1036-1039.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clements JD, Finkelstein RA. Isolation and characterization of homogeneous heat-labile enterotoxins with high specific activity from Escherichia coli cultures. Infect Immun. 1979;24:760–769. doi: 10.1128/iai.24.3.760-769.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clements JD, Yancey RJ, Finkelstein RA. Properties of homogeneous heat-labile enterotoxin from Escherichia coli. Infect Immun. 1980;29:91–97. doi: 10.1128/iai.29.1.91-97.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corneille S, Lutz K, Svab Z, Maliga P. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 2001;27:171–178. doi: 10.1046/j.1365-313x.2001.01068.x. [DOI] [PubMed] [Google Scholar]
  7. Daniell H (1997) Recombinant gene expression protocols. In: Tuan R (ed), Methods in Molecular Biology. Vol. 62 (pp. 47–58) [DOI] [PubMed]
  8. Humana P., Totowa NJ., Daniell H, Datta R, Varma S, Gray S, Lee SB. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol. 1998;16:345–348. doi: 10.1038/nbt0498-345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daniell H, Lee SB, Panchal T, Wiebe PO. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol. 2001;311:1001–1009. doi: 10.1006/jmbi.2001.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Cosa B, Moar W, Lee SB, Miller M, Danielle H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol. 2001;19:71–74. doi: 10.1038/83559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickinson BL. Use of Escherichia coli heat-labile enterotoxin as an oral adjuvant. In: Kiyono H, Ogra PL, McGhee JR JR, editors. Mucosal Vaccines. San Diego, CA: Academic Press; 1996. pp. 73–87. [Google Scholar]
  12. Dus S. M., Wigdorovitz A, Trono K, Rios RD, Franzone PM, Gil F, et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine. 2002;20:1141–1147. doi: 10.1016/s0264-410x(01)00434-0. [DOI] [PubMed] [Google Scholar]
  13. Elson CO. Cholera toxin as a mucosal adjuvant. In: Kiyono H, Ogra PL, McGhee JR, editors. Mucosal Vaccines. New York, NY: Academic Press; 1996. [Google Scholar]
  14. Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol. 2000;18:1151–1155. doi: 10.1038/81132. [DOI] [PubMed] [Google Scholar]
  15. Gilligan PH, Brown JC, Robertson DC. Immunological relationships between cholera toxin and Escherichia coli heatlabile enterotoxin. Infect Immun. 1983;42:683–691. doi: 10.1128/iai.42.2.683-691.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gomez N, Carrillo C, Salinas J, Parra F, Borca MV, Escribano JM. Expression of immunogenic glycoprotein S polypeptides from transmissible gastroenteritis coronavirus in transgenic plants. Virology. 1998;249:352–358. doi: 10.1006/viro.1998.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haq TA, Mason HS, Clements JD, Arntzen CJ. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714–716. doi: 10.1126/science.7732379. [DOI] [PubMed] [Google Scholar]
  18. Kang TJ, Fawley MW. Variable (CA/GT)n simple sequence repeat DNA in the alga Chlamydomonas. Plant Mol Biol. 1997;35:943–948. doi: 10.1023/a:1005897400357. [DOI] [PubMed] [Google Scholar]
  19. Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA. 2001;98:11539–11544. doi: 10.1073/pnas.191617598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kozuka S, Yasuda Y, Isaka M, Masaki N, Taniguchi T, Matano K, et al. Efficient extracellular production of recombinant Escherichia coli heat-labile enterotoxin B subunit by using the expression/secretion system of Bacillus brevis and its mucosal immunoadjuvanticity. Vaccine. 2000;18:1730–1737. doi: 10.1016/s0264-410x(99)00547-2. [DOI] [PubMed] [Google Scholar]
  21. Lauterslager TG, Florack DE, van der Wal TJ, Molthoff JW, Langeveld JP, Bosch D, et al. Oral immunisation of naive and primed animals with transgenic potato tubers expressing LT-B. Vaccine. 2001;19:2749–2755. doi: 10.1016/s0264-410x(00)00513-2. [DOI] [PubMed] [Google Scholar]
  22. Lutz KA, Knapp JE, Maliga P. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol. 2001;125:1585–1590. doi: 10.1104/pp.125.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine. 1998;16:1336–1343. doi: 10.1016/s0264-410x(98)80020-0. [DOI] [PubMed] [Google Scholar]
  24. Mason HS, Warzecha H, Mor T, Arntzen CJ. Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med. 2002;8:324–329. doi: 10.1016/s1471-4914(02)02360-2. [DOI] [PubMed] [Google Scholar]
  25. Merritt EA, Sixma TK, Kalk KH, van Zanten BA, Hol WG. Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT) Mol Microbiol. 1994;13:745–753. doi: 10.1111/j.1365-2958.1994.tb00467.x. [DOI] [PubMed] [Google Scholar]
  26. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol. 2001;19:870–875. doi: 10.1038/nbt0901-870. [DOI] [PubMed] [Google Scholar]
  27. Schon A, Freire E. Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry. 1989;28:5019–5024. doi: 10.1021/bi00438a017. [DOI] [PubMed] [Google Scholar]
  28. Sambrook J, Russell DW. A Laboratory Manual. 3rd edn. Plainview, NY: Cold Spring Harbor Laboratory; 2001. Molecular Cloning. [Google Scholar]
  29. Scott SE, Wilkinson MJ. Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol. 1999;17:390–392. doi: 10.1038/7952. [DOI] [PubMed] [Google Scholar]
  30. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 1999;19:209–216. doi: 10.1046/j.1365-313x.1999.00508.x. [DOI] [PubMed] [Google Scholar]
  31. Staub JM, Maliga P. Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J. 1995;7:845–848. doi: 10.1046/j.1365-313x.1995.07050845.x. [DOI] [PubMed] [Google Scholar]
  32. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, et al. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol. 2000;18:333–338. doi: 10.1038/73796. [DOI] [PubMed] [Google Scholar]
  33. Stoger E, Sack M, Fischer R, Christou P. Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol. 2002;13:161–166. doi: 10.1016/s0958-1669(02)00303-8. [DOI] [PubMed] [Google Scholar]
  34. Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA. 1993;90:913–917. doi: 10.1073/pnas.90.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Svab Z, Hajdukiewicz P, Maliga P. Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA. 1990;87:8526–8530. doi: 10.1073/pnas.87.21.8526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med. 1998;4:607–609. doi: 10.1038/nm0598-607. [DOI] [PubMed] [Google Scholar]
  37. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis. 2000;182:302–305. doi: 10.1086/315653. [DOI] [PubMed] [Google Scholar]
  38. Tuboly T, Yu W, Bailey A, Degrandis S, Du S, Erickson L, Nagy E. Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine. 2000;18:2023–2028. doi: 10.1016/s0264-410x(99)00525-3. [DOI] [PubMed] [Google Scholar]

Articles from Transgenic Research are provided here courtesy of Nature Publishing Group

RESOURCES