Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1989;18(4):529–540. doi: 10.1007/BF01474548

Acidification and endosome-like compartments in the presynaptic terminals of frog retinal photoreceptors

D Sulzer 1, E Holtzman 1,
PMCID: PMC7089201  PMID: 2478669

Summary

By using the ‘acidotropic’ vital dye, Acridine Orange, we have found that the presynaptic terminals of rod and cone photoreceptors in retinas ofRana pipiens maintain a low pH relative to the surrounding medium through an energy dependent mechanism. When this pH is raised, by exposing the retinas to weak bases like ammonium chloride, the terminals exhibit large, membrane-delimited compartments, many of which accumulate endocytic tracers. This effect is partly reversed when the weak bases are removed. We infer that among the acidified structures within the terminals are endocytic compartments with at least some of the characteristics of the endosomes that participate in receptor-mediated endocytosis in other cell types. One role of these structures in the terminals may be in the recycling of synaptic vesicles.

Keywords: Chloride, Ammonium, Retina, Synaptic Vesicle, Acridine

References

  1. Anderson R. G. W., Orci L. A view of acidic intracellular compartments. Journal of Cell Biology. 1988;106:539–44. doi: 10.1083/jcb.106.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baguena-Cervellera R., Renau-Piqueras J., O'Conner J. E., Grisolia S. Effects of prolonged exposure to ammonium on fluid-phase, receptor mediated and adsorptive (nonspecific) mediated endocytosis in cultured neuroblastoma cells: a flow cytometry and cytochemcial study. Histochemistry. 1987;87:445–56. doi: 10.1007/BF00496816. [DOI] [PubMed] [Google Scholar]
  3. Barasch J., Gershon M. D., Nunez E. A., Tamir H., Al-Awqati Q. TSH induces the acidification of the secretory granules of parafollicular cells by increasing the chloride conductance of the granular membrane. Journal of Cell Biology. 1988;107:2137–48. doi: 10.1083/jcb.107.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. V. L., Model P. G., Highstein S. M. Stimulation-induced depletion of vesicles, fatigue of transmission and recovery processes at a vertebrate central synapse. Cold Spring Harbor Symposium on Quantitative Biology. 1976;40:25–36. doi: 10.1101/sqb.1976.040.01.005. [DOI] [PubMed] [Google Scholar]
  5. Cain C. C., Murphy R. F. Growth inhibition of 3T3 fibroblasts by lysosomotropic amines: correlation of effects on intravesicular pH but not vacuolation. Journal of Cell Physiology. 1986;129:65–70. doi: 10.1002/jcp.1041290110. [DOI] [PubMed] [Google Scholar]
  6. Cain C. C., Sipe D. M., Murphy R. F. Regulation of endocytic pH by the Na+−K+ ATPase in living cells. Proceedings of the National Academy of Science (USA) 1989;86:544–8. doi: 10.1073/pnas.86.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caplan M. J., Stow J. L., Newman A. P., Madri J., Anderson H. C., Farquhar M. G., Palade G. E., Jamieson J. D. Dependence on pH of polarized sorting of secreted proteins. Nature. 1987;329:632–5. doi: 10.1038/329632a0. [DOI] [PubMed] [Google Scholar]
  8. Cecarrelli B., Hurlburt W. P., Mauro A. Turnover of transmitter and synaptic vesicles at frog neuromuscular junctions. Journal of Cell Biology. 1973;57:499–524. doi: 10.1083/jcb.57.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chung K.-N., Walter P., Aponte G. W., Moore H.-P. H. Molecular sorting in the secretory pathway. Science. 1989;243:192–7. doi: 10.1126/science.2911732. [DOI] [PubMed] [Google Scholar]
  10. Cooper N. G. F., McLaughlin B. J. Tracer uptake by photoreceptor synaptic terminals. Journal of Ultrastructure Research. 1983;84:252–67. doi: 10.1016/s0022-5320(83)80005-7. [DOI] [PubMed] [Google Scholar]
  11. Deduve C., Debarsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Lysosomotropic agents. Biochemical Pharmacology. 1974;23:2495–531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]
  12. Diaz R., Mayorga L., Stahl P. In vitro fusion of endosomes following receptor mediated endocytosis. Journal of Biological Chemistry. 1988;263:6093–100. [PubMed] [Google Scholar]
  13. Erecinska M., Pastuszko A., Wilson D. F., Nelson D. Ammonia-induced release of neurotransmitters from rat brain synaptosomes: differences between the effects of amines and of amino acids. Journal of Neurochemistry. 1987;49:1258–65. doi: 10.1111/j.1471-4159.1987.tb10018.x. [DOI] [PubMed] [Google Scholar]
  14. Evans J., Hood D. C., Holtzman E. Differential effects of cobalt ions on rod and cone synaptic activity in the isolated frog retina. Vision Research. 1978;18:145–51. doi: 10.1016/0042-6989(78)90179-7. [DOI] [PubMed] [Google Scholar]
  15. Evans J. A., Liscum L., Hood D. C., Holtzman E. Uptake of HRP by presynaptic terminals of bipolar cells and photoreceptors of the frog retina. Journal of Histochemistry and Cytochemistry. 1981;29:511–6. doi: 10.1177/29.4.6972957. [DOI] [PubMed] [Google Scholar]
  16. Finkelstein A., Zimmerberg J., Cohen F. S. Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annual Review of Physiology. 1986;46:163–74. doi: 10.1146/annurev.ph.48.030186.001115. [DOI] [PubMed] [Google Scholar]
  17. Fitzpatrick S. M., Cooper A. L., Hertz L. Effects of ammonia and B-methylene D,L-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in culture. Journal of Neurochemistry. 1988;51:1197–206. doi: 10.1111/j.1471-4159.1988.tb03087.x. [DOI] [PubMed] [Google Scholar]
  18. Florey E., Kreibel M. E. Reversible effect of depolarization with K-propionate on sub-miniature end-plate potentials to bell miniature end plate potential ratios, on miniature endplate potential frequency and amplitude and on synaptic vesicle diameters in frog neuromuscular junctions. Neuroscience. 1988;27:1055–72. doi: 10.1016/0306-4522(88)90210-2. [DOI] [PubMed] [Google Scholar]
  19. Graham R. C., Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of the mouse kidney: ultrastructural cytochemistry by a new technique. Journal of Histochemistry and Cytochemistry. 1966;14:291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  20. Gruenberg J. E., Howell K. E. An internalized transmembrane protein resides in a fusion competent endosome for less than five minutes. Proceedings of the National Academy of Science (USA) 1987;84:5758–62. doi: 10.1073/pnas.84.16.5758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Harding C., Levy M. A., Stahl P. Morphological analysis of ligand uptake and processing: the role of multivesicular endosomes and CURL in receptor-ligand processing. European Journal of Cell Biology. 1985;36:230–8. [PubMed] [Google Scholar]
  22. Hawrot E. Cultured sympathetic neurons in the study of nerve growth factor action. In: Black I. B., editor. Cellular and Molecular Biology of Neuronal Development. New York: Plenum; 1984. pp. 143–64. [Google Scholar]
  23. Heuser J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. Journal of Cell Biology. 1989;108:855–64. doi: 10.1083/jcb.108.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Heuser J., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. Journal of Cell Biology. 1973;57:315–44. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Holtzman E. The origin and fate of secretory packages, especially synaptic vesicles. Neuroscience. 1977;2:327–55. doi: 10.1016/0306-4522(77)90001-x. [DOI] [PubMed] [Google Scholar]
  26. Holtzman E. Lysosomes. New York: Plenum Press; 1989. [Google Scholar]
  27. Holtzman E., Freeman A. R., Kashner L. A. Stimulation dependent alterations in peroxidase uptake by lobster neuromuscular junctions. Science. 1971;173:733–6. doi: 10.1126/science.173.3998.733. [DOI] [PubMed] [Google Scholar]
  28. Holtzman E., Mercurio A. M. Membrane circulation in neurons and photoreceptors: some unresolved issues. International Review of Cytology. 1980;67:1–67. doi: 10.1016/s0074-7696(08)62426-2. [DOI] [PubMed] [Google Scholar]
  29. HOLTZMAN, E., SCHMIED, R. & SULZER, D. (1988) Membrane sorting and cycling in photoreceptors of Rana.8th International Conference of Eye Research163 (Abstract).
  30. Holz R. W. The role of osmotic force in exocytosis from adrenal chromaffin cells. Annual Review of Physiology. 1986;48:175–89. doi: 10.1146/annurev.ph.48.030186.001135. [DOI] [PubMed] [Google Scholar]
  31. Holz R. W., Stratford C. A. Effects of divalent ions on vesicle-vesicle fusion studied by a new luminescence assay for fusion. Journal of Membrane Biology. 1979;46:331–58. [Google Scholar]
  32. Jacobson M. Developmental Neurobiology. second edition. New York: Plenum; 1978. [Google Scholar]
  33. JOHNSON, R. G. (ed.) (1987) Cellular and molecular biology of hormone and neurotransmitter-containing secretory vesicles.Annals of the New York Academy of Science493. [PubMed]
  34. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985;230:25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  35. Kelly R. B. The cell biology of the nerve terminal. Neuron. 1988;1:431–8. doi: 10.1016/0896-6273(88)90174-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Liscum L., Hauptman P. J., Hood D. C., Holtzman E. Effect of barium and tetraethylammonium on membrane circulation in frog retinal photoreceptors. Journal of Cell Biology. 1982;95:296–309. doi: 10.1083/jcb.95.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Massey S. C., Redburn D. A. Transmitter circuits in the vertebrate retina. Progress in Neurobiology. 1986;28:55–96. doi: 10.1016/0301-0082(87)90005-0. [DOI] [PubMed] [Google Scholar]
  38. Matheke M. L., Kalff M., Holtzman E. Effects of monensin on photoreceptors of isolated frog retinas. Tissue and Cell. 1983;15:509–13. doi: 10.1016/0040-8166(83)90002-2. [DOI] [PubMed] [Google Scholar]
  39. Matsumoto B., Besharse J. C. Light and temperature modulated staining of the rod outer segment distal tips with Lucifer Yellow. Investigative Ophthalmology. 1985;26:62–35. [PubMed] [Google Scholar]
  40. Maxfield F. R. Acidification of endocytic vesicles and lysosomes. In: Pastan I., Willingham M. C., editors. Endocytosis. New York: Plenum Press; 1985. pp. 235–58. [Google Scholar]
  41. Maycox P. R., Deckerworth T., Hell J. W., Jahn R. Glutamate uptake in brain synaptic vesicles: energy dependence of transport and functional reconstitution in proteoliposomes. Journal of Biological Chemistry. 1988;263:15423–8. [PubMed] [Google Scholar]
  42. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annual Review of Biochemistry. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  43. Mercurio A. M., Holtzman E. Smooth endoplasmic reticulum and other agranular reticulum in frog retinal photoreceptors. Journal of Neurocytology. 1982;11:263–93. doi: 10.1007/BF01258247. [DOI] [PubMed] [Google Scholar]
  44. Miller J. M., Heuser J. E. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. Journal of Cell Biology. 1984;98:685–98. doi: 10.1083/jcb.98.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Moriyama Y., Nelson N. Internal anion binding site and membrane potential dominate the regulation of proton pumping by the chromaffin granule ATPase. Biochemical and Biophysical Research Communications. 1987;149:140–4. doi: 10.1016/0006-291x(87)91615-9. [DOI] [PubMed] [Google Scholar]
  46. Naito S., Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. Journal of Biological Chemistry. 1983;258:696–9. [PubMed] [Google Scholar]
  47. Ohkuma S., Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. Journal of Cell Biology. 1981;90:656–64. doi: 10.1083/jcb.90.3.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rash J. E., Walrond J. P., Morita M. Structural and functional correlates of synaptic transmission at the vertebrate neuromuscular junction. Journal of Electron Microscopic Technique. 1988;10:153–86. doi: 10.1002/jemt.1060100204. [DOI] [PubMed] [Google Scholar]
  49. Ripps H., Shakib M., MacDonald E. D. Peroxidase uptake by photoreceptor terminals of the skate retina. Journal of Cell Biology. 1976;70:86–96. doi: 10.1083/jcb.70.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schacher S., Holtzman E., Hood D. C. Uptake of horseradish peroxidase by frog photoreceptor synapses in the dark and the light. Nature. 1974;249:261–3. doi: 10.1038/249261a0. [DOI] [PubMed] [Google Scholar]
  51. Schacher S., Holtzman E., Hood D. C. Synaptic activity of frog retinal photoreceptors: a peroxidase uptake study. Journal of Cell Biology. 1976;70:178–92. doi: 10.1083/jcb.70.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schaeffer S. F., Raviola E. Membrane recycling in the cone cell endings of the turtle retina. Journal of Cell Biology. 1978;79:802–25. doi: 10.1083/jcb.79.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schmied R., Holtzman E. A phosphatase activity and a synaptic vesicle antigen in multivesicular bodies of frog retinal photoreceptor terminals. Journal of Neurocytology. 1987;16:627–37. doi: 10.1007/BF01637655. [DOI] [PubMed] [Google Scholar]
  54. Stanley E. F., Ehrenstein G., Russel J. Evidence for anion channels in secretory vesicles. Neuroscience. 1988;25:1035–9. doi: 10.1016/0306-4522(88)90056-5. [DOI] [PubMed] [Google Scholar]
  55. Sulzer D., Holtzman E. Alcian Blue and Neutral Red staining of retinal synaptic layers. Journal of Histochemistry and Cytochemistry. 1986;34:1513–15. doi: 10.1177/34.11.2430011. [DOI] [PubMed] [Google Scholar]
  56. Sulzer D., Holtzman E. A link between acidification and membrane cycling in the terminals of frog retinal photoreceptors. Abstracts of Society for Neuroscience. 1988;14:619. [Google Scholar]
  57. Sulzer D., Piscopo I., Ungar F., Holtzman E. Lead-dependent deposits in diverse synaptic vesicles: suggestive evidence for the presence of anionic binding sites. Journal of Neurobiology. 1987;18:467–83. doi: 10.1002/neu.480180507. [DOI] [PubMed] [Google Scholar]
  58. SULZER, D., SCHMIED, R. & HOLTZMAN, E. (1987b) Properties of frog retinal synaptic terminals that may bear on acidification.Abstracts of the American Society for Cell Biology Summer Conference on Acidic Intracellular CompartmentsST38.
  59. Tartakoff A. The Secretory and Endocytic Paths. New York: Wiley and Sons; 1987. [Google Scholar]
  60. Tooze J., Tooze S. A., Fuller S. D. Sorting of progeny corona virus from condensed secretory proteins at the exit from the trans-Golgi network of AT-20 cells. Journal of Cell Biology. 1987;105:1215–26. doi: 10.1083/jcb.105.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Torri-Tarelli F., Maimann C., Ceccarelli B. Coated vesicles and coated pits during enhanced quantal release of acetylcholine at the neuromuscular synapse. Journal of Neurocytology. 1987;16:205–14. doi: 10.1007/BF01795304. [DOI] [PubMed] [Google Scholar]
  62. Turkewitz A. P., Schwartz A. L., Harrison S. C. A pH dependent reversible configurational transition of the human transferrin receptor leads to self-association. Journal of Biological Chemistry. 1988;263:16308–15. [PubMed] [Google Scholar]
  63. Van Der Kloot W. Inhibition of packing of acetylcholine into quanta by ammonium. FASEB Journal. 1987;1:298–309. doi: 10.1096/fasebj.1.4.3498657. [DOI] [PubMed] [Google Scholar]
  64. Van Der Kloot W., Spielholz N. Effects of changes in tonicity of the extracellular solution on the size of vesicles in frog motor nerve terminals. Journal of Neurocytology. 1987;16:77–84. doi: 10.1007/BF02456699. [DOI] [PubMed] [Google Scholar]
  65. Weibel E. R. Stereological methods in cell biology. Where are we — where are we going? Journal of Histochemistry and Cytochemistry. 1981;29:1043–52. doi: 10.1177/29.9.7026667. [DOI] [PubMed] [Google Scholar]
  66. Whittaker V. P. Cholinergic synaptic vesicles from the electromotor nerve terminals of Torpedo. Annals of the New York Academy of Science. 1987;493:77–91. doi: 10.1111/j.1749-6632.1987.tb27185.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurocytology are provided here courtesy of Nature Publishing Group

RESOURCES