Abstract
The uptake ofL-ascorbic acid (vitamin C) by astrocytes was studied using primary cultures prepared from the neopallium of newborn Swiss CD-1 mice or Sprague-Dawley rats. Initial uptake rates were significantly greater in mouse than in rat astrocytes. Exposure of cultures to 0.25 mM dibutyryl cyclic AMP for 2 weeks changed cell morphology from polygonal to stellate and stimulated ascorbate uptake, with the greatest stimulation occurring in mouse astrocytes. Uptake was specific for the vitamin since it was not diminished by the presence of other organic anions including acetate, formate, lactate, malonate, oxalate, p-aminohippurate, pyruvate and succinate. Ascorbate uptake was Na+-dependent but did not have a specific requirement for external Cl− (Cl− 0). Substitution of Cl− 0 by Br− or NO3 − decreased ascorbate uptake rates by 20–31%; whereas substitution by gluconate or isethionate increased uptake by 20–31%. Ascorbate transport by astroglial cultures from both animal species was rapidly (≤1 min) and reversibly inhibited by the anion transport inhibitors furosemide, 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS) and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). The rapid and reversible effects of the impermeant inhibitors (SITS and DIDS) are consistent with direct inhibition of ascorbate transporters located in the astroglial plasma membrane.
Key Words: Vitamin C, L-ascorbic acid, astrocytes, furosemide, SITS, DIDS
References
- 1.Spector R. Vitamin homeostasis in the central nervous system. New Engl. J. Med. 1977;296:1393–1398. doi: 10.1056/NEJM197706162962409. [DOI] [PubMed] [Google Scholar]
- 2.Rose R. C. Transport of ascorbic acid and other water-soluble vitamins. Biochim. Biophys. Acta. 1988;947:335–366. doi: 10.1016/0304-4157(88)90014-7. [DOI] [PubMed] [Google Scholar]
- 3.Kaufman S., Friedman S. Dopamine beta-hydroxylase. Pharmacol. Rev. 1965;17:71–107. [PubMed] [Google Scholar]
- 4.Kuo C-H., Hata F., Yoshida H., Yamatodani A., Wada H. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci. 1979;24:911–916. doi: 10.1016/0024-3205(79)90341-2. [DOI] [PubMed] [Google Scholar]
- 5.Brick P. L., Howlett A. C., Beinfeld M. C. Synthesis and release of vasoactive intestinal polypeptide (VIP) by mouse neuroblastoma cells: modulation by cyclic nucleotides and ascorbic acid. Peptides. 1985;6:1075–1078. doi: 10.1016/0196-9781(85)90430-9. [DOI] [PubMed] [Google Scholar]
- 6.Miller B. T., Cicero T. J. Ascorbic acid enhances the release of luteinizing hormone-releasing hormone from the mediobasal hypothalamus in vitro. Life Sci. 1986;39:2447–2454. doi: 10.1016/0024-3205(86)90487-x. [DOI] [PubMed] [Google Scholar]
- 7.Leslie F. M., Dunlap C. E., III, Cox B. M. Ascorbate decreases ligand binding to neurotransmitter receptors. J. Neurochem. 1980;34:219–221. doi: 10.1111/j.1471-4159.1980.tb04645.x. [DOI] [PubMed] [Google Scholar]
- 8.Jones S. B., Bylund D. B. Ascorbic acid inhibition of alpha-adrenergic receptor binding. Biochem. Pharmacol. 1986;35:595–599. doi: 10.1016/0006-2952(86)90353-9. [DOI] [PubMed] [Google Scholar]
- 9.Todd R. D., Bauer P. A. Ascorbate modulates 5-[3]hydroxytryptamine binding to central 5-HT sites in bovine frontal cortex. J. Neurochem. 1988;50:1505–1512. doi: 10.1111/j.1471-4159.1988.tb03037.x. [DOI] [PubMed] [Google Scholar]
- 10.Ceasar P. M., Hague P., Sharman D. F., Werdinius R. Studies on the metabolism of catecholamines in the central nervous system of the mouse. Br. J. Pharmacol. 1974;51:187–195. doi: 10.1111/j.1476-5381.1974.tb09646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Saner A., Weiser H., Hornig D., DaPrada M., Pletscher A. Cerebral monoamine metabolism in guinea-pigs with ascorbic acid deficiency. J. Pharm. Pharmac. 1975;27:896–902. doi: 10.1111/j.2042-7158.1975.tb10244.x. [DOI] [PubMed] [Google Scholar]
- 12.Wilson J. X., Walz W. Catecholamine uptake into cultured mouse astrocytes. In: Boulton A. A., Juorio A. V., Downer R. G. R., editors. Trace Amines; Comparative and Clinical Neurobiology. Clifton, U.S.A.: Humana Press; 1988. pp. 301–305. [Google Scholar]
- 13.Sharma S. K., Johnstone R. M., Wuastel J. H. Active transport of ascorbic acid in adrenal cortex and brain cortex in vitro and the effects of ACTH and steroids. Can. J. Biochem. Physiol. 1963;41:597–604. [PubMed] [Google Scholar]
- 14.Shenk J. O., Miller E., Gaddis R., Adams R. N. Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res. 1982;253:353–356. doi: 10.1016/0006-8993(82)90709-0. [DOI] [PubMed] [Google Scholar]
- 15.Wilson J. X. Ascorbic acid uptake by a high-affinity sedium-dependent mechanism in cultured rat astrocytes. J. Neurochem. 1989;53:1064–1071. doi: 10.1111/j.1471-4159.1989.tb07396.x. [DOI] [PubMed] [Google Scholar]
- 16.Hoffmann E. K. Anion transport systems in the plasma membrane of vertebrate cells. Biochim. Biophys. Acta. 1986;864:1–31. doi: 10.1016/0304-4157(86)90014-6. [DOI] [PubMed] [Google Scholar]
- 17.Helbig H., Korbmacher C., Wohlfarth J., Berweck S., Kuhner D., Wiederholt M. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells. Am. J. Physiol. 1989;256:C44–C49. doi: 10.1152/ajpcell.1989.256.1.C44. [DOI] [PubMed] [Google Scholar]
- 18.McGahan M. C., Bentley P. J. Stimulation of transepithelial sodium and chloride transport by ascorbic acid. Biochim. Biophys. Acta. 1982;689:385–392. doi: 10.1016/0005-2736(82)90273-5. [DOI] [PubMed] [Google Scholar]
- 19.Kimelberg H. K., Biddlecome S., Bourke R. S. SITS-inhibitable Cl− transport and Na+ dependent H+ production in primary astroglial cultures. Brain Res. 1979;173:111–124. [PubMed] [Google Scholar]
- 20.Kimelberg H. K. Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim. Biophys. Acta. 1981;646:179–184. doi: 10.1016/0005-2736(81)90285-6. [DOI] [PubMed] [Google Scholar]
- 21.Tas P. W. L., Massa P. T., Kress H. G., Koschel K. Characterization of an Na+/K+/Cl− co-transport in primary cultures of rat astrocytes. Biochim. Biophys. Acta. 1987;903:411–416. doi: 10.1016/0005-2736(87)90047-2. [DOI] [PubMed] [Google Scholar]
- 22.Walz W., Hertz L. Comparison between fluxes of potassium and chloride in astrocytes in primary cultures. Brain Res. 1983;277:321–328. doi: 10.1016/0006-8993(83)90940-x. [DOI] [PubMed] [Google Scholar]
- 23.Cragoe E. J., Jr. Drugs for the treatment of traumatic brain injury. Med. Res. Rev. 1987;7:271–305. doi: 10.1002/med.2610070302. [DOI] [PubMed] [Google Scholar]
- 24.Kimelberg H. K., Cragoe E. J., Barron K. D., Nelson L. R., Bourke R. S., Popp A. J., Szarowski D., Rose J. W., Easton S. K., Woltersdorf O. W., Pietruszkiewicz A. M. Treatment of traumatic head injury and inhibition of associated astroglial swelling by an anion transport inhibitor. In: Norenberg M.D., Hertz L., Schousboe A., editors. The Biochemical Pathology of Astrocytes. New York: Alan R. Liss; 1988. pp. 337–339. [Google Scholar]
- 25.Meinig G., Reulen H. J., Simon R. S., Schurmann K. Clinical, chemical, and CT evaluation of short-term and long-term antiedema therapy with dexamethasone and diuretics. Adv. Neurol. 1980;28:471–489. [PubMed] [Google Scholar]
- 26.Wilson J.X., Dixon S. J. Effects of anion transport inhibitors on ascorbic acid uptake by cultured rodent astrocytes. Proc. Can. Fed. Biol. Soc. 1989;32:83. [Google Scholar]
- 27.Hertz L., Juurlink B. H. J., Fosmark H., Schousboe A. Methodological appendix: Astrocytes in primary cultures. In: Pfeiffer S.E., editor. Neuroscience Approached Through Cell Culture, Vol. 1. Boca Raton, Florida: CRC Press; 1982. pp. 175–186. [Google Scholar]
- 28.Hertz L., Juurlink B. H. P., Szuchet S. Cell cultures. In: Lajtha A., editor. Handbook of Neurochemistry, Vol. 8. New York: Plenum Press; 1985. pp. 603–661. [Google Scholar]
- 29.Wilson G. A. R., Beushausen S., Dales S. In vivo and in vitro models of demyelinating diseases: XV. Differentiation influences on the regulation of coronavirus infection in primary explants of mouse CNS. Virology. 1986;151:253–264. doi: 10.1016/0042-6822(86)90047-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membrane Biol. 1972;10:311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
- 31.Behrens W. A., Madere R. A highly sensitive high-performance liquid chromatography method for the estimation of ascorbic and dehydroascorbic acid in tissues, biological fluids, and foods. Anal. Biochem. 1987;165:102–107. doi: 10.1016/0003-2697(87)90206-5. [DOI] [PubMed] [Google Scholar]
- 32.Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- 33.Brookes N. Neutral amino acid transport in astrocytes: characterization of Na+-independent components of alpha-aminoisobutyric acid uptake. J. Neurochem. 1988;51:1913–1918. doi: 10.1111/j.1471-4159.1988.tb01177.x. [DOI] [PubMed] [Google Scholar]
- 34.Pasantes-Morales H., Schousboe A. Release of taurine from astrocytes during potassium-evoked swelling. Glia. 1989;2:45–50. doi: 10.1002/glia.440020105. [DOI] [PubMed] [Google Scholar]
- 35.Moller A., Hamprecht R. Creatine transport in cultured cells of rat and mouse brain. J. Neurochem. 1989;52:544–550. doi: 10.1111/j.1471-4159.1989.tb09154.x. [DOI] [PubMed] [Google Scholar]
- 36.Walz W., Mozaffari B. Culture environment and channel-mediated potassium fluxes in astrocytes. Brain Res. 1987;412:405–408. doi: 10.1016/0006-8993(87)91152-8. [DOI] [PubMed] [Google Scholar]
- 37.Juurlink B. H. J., Hertz L. Plasticity of astrocytes in primary cultures: An experimental tool and a reason for methodological caution. Dev. Neurosci. 1985;7:263–277. doi: 10.1159/000112295. [DOI] [PubMed] [Google Scholar]
- 38.Neary J. T., Glutierrez M. P., Norenberg L. B., Norenberg M. D. Protein phosphorylation in primary astrocyte cultures treated with and without dibutyryl cyclic AMP. Brain Res. 1987;410:164–168. doi: 10.1016/s0006-8993(87)80040-9. [DOI] [PubMed] [Google Scholar]
- 39.Kogure K., Scheinberg P., Utsunomiya Y., Kishikawa H., Busto R. Sequential cerebral biochemical and physiological events in controlled hypoxemia. Ann. Neurol. 1977;2:304–310. doi: 10.1002/ana.410020408. [DOI] [PubMed] [Google Scholar]
- 40.Fedoroff S., McAuley W. A. J., Houle J. D., Devon R. M. Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. J. Neurosci. Res. 1984;12:15–27. doi: 10.1002/jnr.490120103. [DOI] [PubMed] [Google Scholar]
- 41.Hertz L., Bock E., Schousboe A. GFA content glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev. Neurosci. 1978;1:226–238. [Google Scholar]
- 42.Larsson O.M., Hertz L., Schousboe A. Uptake of GABA and nipecotic acid in astrocytes in primary cultures: changes in the sodium coupling ratio during differentiation. J. Neurosci. Res. 1986;16:699–708. doi: 10.1002/jnr.490160410. [DOI] [PubMed] [Google Scholar]
- 43.Brookes N., Yarowsky P. J. Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J. Neurochem. 1985;44:473–479. doi: 10.1111/j.1471-4159.1985.tb05438.x. [DOI] [PubMed] [Google Scholar]
- 44.Kimelberg H. K., Bowman C., Biddlecome S., Bourke R. S. Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains. Brain Res. 1979;177:533–550. doi: 10.1016/0006-8993(79)90470-0. [DOI] [PubMed] [Google Scholar]
- 45.Knoth J., Viveros O. H., Diliberto E. J., Jr. Evidence for the release of newly acquired ascorbate and alpha-aminoisobutyric acid from the cytosol of adrenomedullary chromaffin cells through specific transporter mechanisms. J. Biol. Chem. 1987;262:14036–14041. [PubMed] [Google Scholar]
- 46.Wagner E. S., White W., Jennings M., Bennett K. The entrapment of [14C]ascorbic acid in human erythrocytes. Biochim. Biophys. Acta. 1987;902:133–136. doi: 10.1016/0005-2736(87)90143-x. [DOI] [PubMed] [Google Scholar]
- 47.Walz W., Hinks E. C. Carrier-mediated KCl accumulation accompanied by water movements is involved in the control of physiological K+ levels by astrocytes. Brain Res. 1985;343:44–51. doi: 10.1016/0006-8993(85)91156-4. [DOI] [PubMed] [Google Scholar]
- 48.Bourke R. S., Kimelberg H. K., Daze M., Church G. Swelling and ion uptake in cat cerebocortical slices: control by neurotransmitters and ion transport mechanisms. Neurochem. Res. 1983;8:5–24. doi: 10.1007/BF00965650. [DOI] [PubMed] [Google Scholar]
