Abstract
While influenza remains a major threat to public health, researchers continue to search for a universal solution to improving the efficacy of the influenza vaccine. Even though influenza affects people of all different ages, it can be extremely hazardous to people of 65 years of age or older since that is the population that makes up the high majority of the death toll caused by influenza-related diseases. Elderly individuals suffer the effects of immunosenescence as they age, which is the diminishing of the overall immune response. Immunosenescence occurs by specifically affecting the adaptive immune response which controls the establishment of immunity after vaccination or infection. There are many studies under way that are trying to find a resolution to the problem of the influenza vaccine not providing enough protection in the elderly population. One of the possible strategies is to seek the use of an optimal adjuvant, an immunological agent that can enhance immune responses, with the current vaccine formulation. Here, we used the murine model to review the effects of adjuvants on the antibody response to influenza vaccines in aged mice. Since adjuvants can enhance the production of important inflammatory cytokines and activation of dendritic cells, the stimulation of these cells are boosted to increase the effectiveness of the influenza vaccine in aged mice which would hopefully translate to the elderly.
Keywords: adjuvant, influenza vaccine, aged mice
References
- Asanuma H, Hirokawa K, Uchiyama M, Suzuki Y, Aizawa C, Kurata T, Sata T, Tamura S. Immune responses and protection in different strains of aged mice immunized intranasally with an adjuvant-combined influenza vaccine. Vaccine. 2001;19(28–29):3981–3989. doi: 10.1016/S0264-410X(01)00129-3. [DOI] [PubMed] [Google Scholar]
- Camilloni B, Neri M, Lepri E, Basileo M, Sigismondi N, Puzelli S, Donatelli I, Iorio A M. An influenza B outbreak during the 2007/2008 winter among appropriately immunized elderly people living in a nursing home. Vaccine. 2010;28(47):7536–7541. doi: 10.1016/j.vaccine.2010.08.064. [DOI] [PubMed] [Google Scholar]
- Centers for Disease ControlPrevention CDC . Influenza Activity-United States, 2012–13. 2013. [Google Scholar]
- Centers for Disease ControlPrevention CDC Estimated influenza illnesses and hospitalizations averted by influenza vaccination-United States, 2012–13 influenza season. MMWR Morb Mortal Wkly Rep. 2013;62(49):997–1000. [PMC free article] [PubMed] [Google Scholar]
- Centers for Disease ControlPrevention CDC Influenza activity-United States, 2012–13 season and composition of the 2013–14 influenza vaccine. MMWR Morb Mortal Wkly Rep. 2013;62(23):473–479. [PMC free article] [PubMed] [Google Scholar]
- Chan T C, Hung I F, Luk J K, Shea Y F, Chan F H, Woo P C, Chu L W. Efficacy of dual vaccination of pandemic H1N1 2009 influenza and seasonal influenza on institutionalized elderly: a oneyear prospective cohort study. Vaccine. 2011;29(44):7773–7778. doi: 10.1016/j.vaccine.2011.07.112. [DOI] [PubMed] [Google Scholar]
- Chen W H, Kozlovsky B F, Effros R B, Grubeck-Loebenstein B, Edelman R, Sztein M B. Vaccination in the elderly: an immunological perspective. Trends Immunol. 2009;30(7):351–359. doi: 10.1016/j.it.2009.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deans G D, Stiver H G, McElhaney J E. Influenza vaccines provide diminished protection but are cost-saving in older adults. J Intern Med. 2010;267(2):220–227. doi: 10.1111/j.1365-2796.2009.02201.x. [DOI] [PubMed] [Google Scholar]
- Diebold S S, Kaisho T, Hemmi H, Akira S, Reise Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–1531. doi: 10.1126/science.1093616. [DOI] [PubMed] [Google Scholar]
- Dorrington M G, Bowdish D M E. Immunosenescence and novel vaccination strategies for the elderly. Front Immunol. 2013;4:171. doi: 10.3389/fimmu.2013.00171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiore A E, Uyeki T M, Broder K, Finelli L, Euler G L, Singleton J A, Iskander J K, Wortley P M, Shay D K, Bresee J S, Cox N J, the Centers for Disease ControlPrevention CDC Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recomm Rep. 2010;59(RR-8):1–62. [PubMed] [Google Scholar]
- Fisher E M, Jiang J. Adjuvanted vaccines against influenza in the elderly. Front Biol. 2012;7(3):221–226. doi: 10.1007/s11515-012-1221-3. [DOI] [Google Scholar]
- Forrest B D, Steele A D, Hiemstra L, Rappaport R, Ambrose C S, Gruber W C. A prospective, randomized, open-label trial comparing the safety and efficacy of trivalent live attenuated and inactivated influenza vaccines in adults 60 years of age and older. Vaccine. 2011;29(20):3633–3639. doi: 10.1016/j.vaccine.2011.03.029. [DOI] [PubMed] [Google Scholar]
- Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x. [DOI] [PubMed] [Google Scholar]
- Goronzy J J, Weyand C M. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428–436. doi: 10.1038/ni.2588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorse G J, Campbell M J, Otto E E, Powers D C, Chambers G W, Newman F K. Increased anti-influenza A virus cytotoxic T cell activity following vaccination of the chronically ill elderly with live attenuated or inactivated influenza virus vaccine. J Infect Dis. 1995;172(1):1–10. doi: 10.1093/infdis/172.1.1. [DOI] [PubMed] [Google Scholar]
- Janeway C A, Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216. doi: 10.1146/annurev.immunol.20.083001.084359. [DOI] [PubMed] [Google Scholar]
- Katz J M, Lu X, Todd C W, Newman M J. A nonionic block copolymer adjuvant (CRL1005) enhances the immunogenicity and protective efficacy of inactivated influenza vaccine in young and aged mice. Vaccine. 2000;18(21):2177–2187. doi: 10.1016/S0264-410X(00)00022-0. [DOI] [PubMed] [Google Scholar]
- Keitel W A, Atmar R L, Cate T R, Petersen N J, Greenberg S B, Ruben F, Couch R B. Safety of high doses of influenza vaccine and effect on antibody responses in elderly persons. Arch Intern Med. 2006;166(10):1121–1127. doi: 10.1001/archinte.166.10.1121. [DOI] [PubMed] [Google Scholar]
- Lambert N D, Ovsyannikova I G, Pankratz V S, Jacobson RM, Poland G A. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev Vaccines. 2012;11(8):985–994. doi: 10.1586/erv.12.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee B Y, Ercius A K, Smith K J. A predictive model of the economic effects of an influenza vaccine adjuvant for the older adult (age 65 and over) population. Vaccine. 2009;27(16):2251–2257. doi: 10.1016/j.vaccine.2009.02.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lelic A, Verschoor C P, Ventresca M, Parsons R, Evelegh C, Bowdish D, Betts M R, Loeb M B, Bramson J L. The polyfunctionality of human memory CD8 + T cells elicited by acute and chronic virus infections is not influenced by age. PLoS Pathog. 2012;8(12):e1003076. doi: 10.1371/journal.ppat.1003076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald A J, Cao L, He Y, Zhao Q, Jiang S, Lustigman S. rOv-ASP-1, a recombinant secreted protein of the helminth Onchocercavolvulus, is a potent adjuvant for inducing antibodies to ovalbumin, HIV-1 polypeptide and SARS-CoV peptide antigens. Vaccine. 2005;23(26):3446–3452. doi: 10.1016/j.vaccine.2005.01.098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McElhaney J E, Effros R B. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21(4):418–424. doi: 10.1016/j.coi.2009.05.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKee A S, Munks M W, Marrack P. How do adjuvants work? Important considerations for new generation adjuvants. Immunity. 2007;27(5):687–690. doi: 10.1016/j.immuni.2007.11.003. [DOI] [PubMed] [Google Scholar]
- Olivieri F, Rippo M R, Prattichizzo F, Babini L, Graciotti L, Recchioni R, Procopio A D. Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing. 2013;10(1):11. doi: 10.1186/1742-4933-10-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podda A. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine. 2001;19(17–19):2673–2680. doi: 10.1016/S0264-410X(00)00499-0. [DOI] [PubMed] [Google Scholar]
- Rappuoli R, Mandl C W, Black S, De Gregorio E. Vaccines for the twenty-first century society. Nat Rev Immunol. 2011;11(12):865–872. doi: 10.1038/nri3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruf B R, Colberg K, Frick M, Preusche A. Open, randomized study to compare the immunogenicity and reactogenicity of an influenza split vaccine with an MF59-adjuvanted subunit vaccine and a virosome-based subunit vaccine in elderly. Infection. 2004;32(4):191–198. doi: 10.1007/s15010-004-3204-z. [DOI] [PubMed] [Google Scholar]
- Rümke H C, Richardus J H, Rombo L, Pauksens K, Plaßmann G, Durand C, Devaster JM, Dewé W, Oostvogels L. Selection of an adjuvant for seasonal influenza vaccine in elderly people: modelling immunogenicity from a randomized trial. BMC Infect Dis. 2013;13(1):348. doi: 10.1186/1471-2334-13-348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider-Ohrum K, Giles B M, Weirback H K, Williams B L, DeAlmeida D R, Ross TM. Adjuvants that stimulate TLR3 or NLPR3 pathways enhance the efficiency of influenza virus-like particle vaccines in aged mice. Vaccine. 2011;29(48):9081–9092. doi: 10.1016/j.vaccine.2011.09.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan S J, Jacobson R, Poland G A. Advances in the vaccination of the elderly against influenza: role of a high-dose vaccine. Expert Rev Vaccines. 2010;9(10):1127–1133. doi: 10.1586/erv.10.117. [DOI] [PubMed] [Google Scholar]
- Tawe W, Pearlman E, Unnasch T R, Lustigman S. Angiogenic activity of Onchocerca volvulus recombinant proteins similar to vespid venom antigen 5. Mol Biochem Parasitol. 2000;109(2):91–99. doi: 10.1016/S0166-6851(00)00231-0. [DOI] [PubMed] [Google Scholar]
- Thompson WW, Moore MR, Weintraub E, Cheng P Y, Jin X, Bridges C B, Bresee J S, Shay D K. Estimating influenza-associated deaths in the United States. Am J Public Health. 2009;99(S2Suppl2):S225–S230. doi: 10.2105/AJPH.2008.151944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tollervey J R, Lunyak V V. Epigenetics: judge, jury and executioner of stem cell fate. Epigenetics. 2012;7(8):823–840. doi: 10.4161/epi.21141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triozzi P L, Stevens V C, Aldrich W, Powell J, Todd CW, Newman MJ. Effects of a beta-human chorionic gonadotropin subunit immunogen administered in aqueous solution with a novel nonionic block copolymer adjuvant in patients with advanced cancer. Clin Cancer Res. 1997;3(12Pt1):2355–2362. [PubMed] [Google Scholar]
- Van Zant G, Liang Y. Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med. 2012;1(9):651–657. doi: 10.5966/sctm.2012-0033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao W, Du L, Liang C, Guan J, Jiang S, Lustigman S, He Y, Zhou Y. Evaluation of recombinant Onchocerca volvulus activation associated protein-1 (ASP-1) as a potent Th1-biased adjuvant with a panel of protein or peptide-based antigens and commercial inactivated vaccines. Vaccine. 2008;26(39):5022–5029. doi: 10.1016/j.vaccine.2008.07.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
