Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1991;16(1):73–78. doi: 10.1007/BF00965831

Evidence for electrogenic sodium-dependent ascorbate transport in rat astroglia

John X Wilson 1, Ewa M Jaworski 1, S Jeffrey Dixon 1,2
PMCID: PMC7089219  PMID: 1711164

Abstract

The dependence of ascorbate uptake on external cations was studied in primary cultures of rat cerebral astrocytes. Initial rates of ascorbate uptake were diminished by lowering the external concentrations of either Ca2+ or Na+. The Na+-dependence of astroglial ascorbate uptake gave Hill coefficients of approximately 2, consistent with a Na+-ascorbate cotransport system having stoichiometry of 2 Na+∶1 ascorbate anion. Raising external K+ concentration incrementally from 5.4 to 100 mM, so as to depolarize the plasma membrane, decreased the initial rate of ascorbate uptake, with the degree of inhibition depending on the level of K+. The depolarizing ionophores gramicidin and nystatin slowed ascorbate uptake by astrocytes incubated in 5.4 mM K+; whereas, the nondepolarizing ionophore valinomycin did not. Qualitatively similar results were obtained whether or not astrocytes were pretreated with dibutyryl cyclic AMP (0.25 mM for 2 weeks) to induce stellation. These data are consistent with the existence of an electrogenic Na+-ascorbate cotransport system through which the rate of ascorbate uptake is modulated by endogenous agents, such as K+, that alter astroglial membrane potential.

Key Words: Ascorbate, astrocytes, membrane potential, transport mechanism, rat brain, Vitamin C

References

  • 1.Carey D. J., Todd M. S. Schwann cell myelination in a chemically defined medium: Demonstration of a requirement for additives that promote Schwann cell extracellular matrix formation. Dev. Brain Res. 1987;32:95–102. doi: 10.1016/0165-3806(87)90142-8. [DOI] [PubMed] [Google Scholar]
  • 2.Eldridge C. F., Bunge M. B., Bunge R. P., Wood P. M. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 1987;105:1023–1034. doi: 10.1083/jcb.105.2.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kaufman S., Friedman S. Dopamine beta-hydroxylase. Pharmacol. Rev. 1965;17:71–107. [PubMed] [Google Scholar]
  • 4.Kuo C.-H., Hata F., Yoshida H., Yamatodani A., Wada H. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci. 1979;24:911–916. doi: 10.1016/0024-3205(79)90341-2. [DOI] [PubMed] [Google Scholar]
  • 5.Pinchasi I., Michaelson D. M., Sokolvsky M. Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles. FEBS Lett. 1979;108:189–192. doi: 10.1016/0014-5793(79)81207-7. [DOI] [PubMed] [Google Scholar]
  • 6.Brick P. L., Howlett A. C., Beinfeld M. C. Synthesis and release of vasoactive intestinal polypeptide (VIP) by mouse neuroblastoma cells: modulation by cyclic nucleotides and ascorbic acid. Peptides. 1985;6:1075–1078. doi: 10.1016/0196-9781(85)90430-9. [DOI] [PubMed] [Google Scholar]
  • 7.Leslie F. M., Dunlap C. E., III, Cox B. M. Ascorbate decreases ligand binding to neurotransmitter receptors. J. Neurochem. 1980;34:219–221. doi: 10.1111/j.1471-4159.1980.tb04645.x. [DOI] [PubMed] [Google Scholar]
  • 8.Jones S. B., Bylund D. B. Ascorbic acid inhibition of alpha-adrenergic receptor binding. Biochem. Pharmacol. 1986;35:595–599. doi: 10.1016/0006-2952(86)90353-9. [DOI] [PubMed] [Google Scholar]
  • 9.Todd R. D., Bauer P. A. Ascorbate modulates 5-[3H]hydroxytryptamine binding to central 5-HT sites in bovine frontal cortex. J. Neurochem. 1988;50:1505–1512. doi: 10.1111/j.1471-4159.1988.tb03037.x. [DOI] [PubMed] [Google Scholar]
  • 10.Subramanian N. On the brain ascorbic acid and its importance in metabolism of biogenic amines. Life Sci. 1977;20:1479–1484. doi: 10.1016/0024-3205(77)90438-6. [DOI] [PubMed] [Google Scholar]
  • 11.Wilson J. X. Uptake of norepinephrine and its oxidation products by cerebral glial cells. Am. Zool. 1987;27:129A. [Google Scholar]
  • 12.Wilson J. X., Walz W. Catecholamine uptake into cultured mouse astrocytes. In: Boulton A. A., Juorio A. V., Downer R.G.R., editors. Trace Amines: Comparative and Clinical Neurobiology. Clifton, U.S.A.: Humana Press; 1988. pp. 301–305. [Google Scholar]
  • 13.Hodges R. E., Hood J., Canham J. E., Sauberlich H. E., Baker E. M. Clinical manifestations of ascorbic acid deficiency in man. Am. J. Clin. Nutr. 1971;24:432–443. doi: 10.1093/ajcn/24.4.432. [DOI] [PubMed] [Google Scholar]
  • 14.Padh H. Cellular functions of ascorbic acid. Biochem. Cell Biol. 1990;68:1166–1173. doi: 10.1139/o90-173. [DOI] [PubMed] [Google Scholar]
  • 15.Spector R. Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J Neurochem. 1989;53:1667–1674. doi: 10.1111/j.1471-4159.1989.tb09229.x. [DOI] [PubMed] [Google Scholar]
  • 16.Raps S. P., Lai J. C. K., Hertz L., Cooper A. J. L. Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 1989;493:398–401. doi: 10.1016/0006-8993(89)91178-5. [DOI] [PubMed] [Google Scholar]
  • 17.Wilson J. X. Ascorbic acid uptake by a high-affinity sodium-dependent mechanism in cultured rat astrocytes. J. Neurochem. 1989;53:1064–1071. doi: 10.1111/j.1471-4159.1989.tb07396.x. [DOI] [PubMed] [Google Scholar]
  • 18.Wilson J. X., Dixon S. J. Ascorbic acid transport in mouse and rat astrocytes is reversibly inhibited by furosemide, SITS and DIDS. Neurochem. Res. 1989;14:1169–1175. doi: 10.1007/BF00965504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Helbig H., Korbmacher C., Wohlfarth J., Berweck S., Kuhner D., Wiederholt M. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells. Am. J. Physiol. 1989;256:C44–C49. doi: 10.1152/ajpcell.1989.256.1.C44. [DOI] [PubMed] [Google Scholar]
  • 20.Hertz L., Juurlink B. H. J., Formark H., Schousboe A. Methodological appendix: Astrocytes in primary cultures. In: Pfeiffer S.E., editor. Neuroscience Approached Through Cell Culture, Vol. 1. Boca Raton, Florida: CRC Press; 1982. pp. 175–186. [Google Scholar]
  • 21.Hertz L., Juurlink B. H. P., Szuchet S. Cell cultures. In: Lajtha A., editor. Handbook of Neurochemistry, Vol. 8. 2nd edit. New York: Plenum Press; 1985. pp. 603–661. [Google Scholar]
  • 22.Wilson G. A. R., Beushausen S., Dales S. In vivo and in vitro models of demyelinating diseases: XV. Differentiation influences on the regulation of coronavirus infection in primary explants of mouse CNS. Virology. 1986;151:253–264. doi: 10.1016/0042-6822(86)90047-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Naus, C. C. G., Bechberger, J. F., Caveney, S., and Wilson, J. X. 1990. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci. Lett. (submitted). [DOI] [PubMed]
  • 24.Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 25.Segel I. H. Enzyme Kinetics. New York: John Wiley and Sons; 1975. [Google Scholar]
  • 26.Sokal R. R., Rohlf R. J. Biometry. San Francisco: W.H. Freeman; 1981. [Google Scholar]
  • 27.Urry D. W. Chemical basis of ion transport specificity in biological membranes. Topics Current Chem. 1985;128:178–218. [Google Scholar]
  • 28.Enkvist M. O. K., Holopainen I., Akerman K. E. O. α-Receptor and cholinergic receptor-linked changes in cytosolic Ca2+ and membrane potential in primary rat astrocytes. Brain Res. 1989;500:46–54. doi: 10.1016/0006-8993(89)90298-9. [DOI] [PubMed] [Google Scholar]
  • 29.Diliberto E. J., Jr., Heckman G. D., Daniels A. J. Characterization of ascorbic acid transport by adrenomedullary chromaffin cells. J. Biol. Chem. 1983;258:12886–12894. [PubMed] [Google Scholar]
  • 30.Walz W., Hertz L. Comparison between fluxes of potassium and chloride in astrocytes in primary cultures. Brain Res. 1983;277:321–328. doi: 10.1016/0006-8993(83)90940-x. [DOI] [PubMed] [Google Scholar]
  • 31.Walz W. Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 1989;33:309–333. doi: 10.1016/0301-0082(89)90005-1. [DOI] [PubMed] [Google Scholar]
  • 32.Hertz L. Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature. 1965;206:1091–1094. doi: 10.1038/2061091a0. [DOI] [PubMed] [Google Scholar]
  • 33.Cummins C. J., glover R. A., Sellinger O. Z. Astroglial uptake is modulated by extracellular K+ J. Neurochem. 1979;33:779–785. doi: 10.1111/j.1471-4159.1979.tb05224.x. [DOI] [PubMed] [Google Scholar]
  • 34.Brookes N., Yarowsky P. J. Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J. Neurochem. 1985;44:473–479. doi: 10.1111/j.1471-4159.1985.tb05438.x. [DOI] [PubMed] [Google Scholar]
  • 35.Stahl B., Wiesinger H., Hamprecht B. Characteristics of sorbitol uptake in rat glial primary cultures. J. Neurochem. 1989;53:665–671. doi: 10.1111/j.1471-4159.1989.tb11755.x. [DOI] [PubMed] [Google Scholar]
  • 36.Moody W. J., Futamachi K. J., Prince D. J. Extracellular potassium activity during epileptogenesis. Exp. Neurol. 1974;42:248–263. doi: 10.1016/0014-4886(74)90023-5. [DOI] [PubMed] [Google Scholar]
  • 37.Sybert G. W., Ward A. A., Jr. Changes in extracellular potassium activity during neocortical propagated seizures. Exp. Neurol. 1974;45:19–41. doi: 10.1016/0014-4886(74)90097-1. [DOI] [PubMed] [Google Scholar]
  • 38.Heinemann U., Lux D. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 1977;120:231–249. doi: 10.1016/0006-8993(77)90903-9. [DOI] [PubMed] [Google Scholar]
  • 39.Kimelberg H. K., Bowman C., Biddlecome S., Bourke R. S. Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains. Brain Res. 1979;177:533–550. doi: 10.1016/0006-8993(79)90470-0. [DOI] [PubMed] [Google Scholar]
  • 40.Kettenmann H., Schachner M. Pharmacological properties of γ-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astorcytes. J. Neurosci. 1985;5:3295–3301. doi: 10.1523/JNEUROSCI.05-12-03295.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Murphy S., Pearce B. Functional receptors for neurotransmitters on astroglial cells. Neuroscience. 1987;22:381–394. doi: 10.1016/0306-4522(87)90342-3. [DOI] [PubMed] [Google Scholar]
  • 42.Hansson E. Astroglia from defined brain regions as studied with primary cultures. Prog. Neurobiol. 1988;30:369–397. doi: 10.1016/0301-0082(88)90008-1. [DOI] [PubMed] [Google Scholar]

Articles from Neurochemical Research are provided here courtesy of Nature Publishing Group

RESOURCES