Summary
The Flaviviridae include almost 70 viruses, nearly half of which have been associated with human disease. These viruses are among the most important arthropod-borne viruses worldwide and include dengue, yellow fever, and Japanese encephalitis viruses. Morbidity and mortality caused by these viruses vary, but collectively they account for millions of encephalitis, hemorrhagic fever, arthralgia, rash, and fever cases per year. Most of the members of this family are transmitted between vertebrate hosts by arthropod vectors, most commonly mosquitoes or ticks. Transmission cycles can be simple or complex depending on the hosts, vectors, the virus, and the environmental factors affecting both hosts and viruses. Replication of virus in invertebrate hosts does not seem to result in any significant pathology, which suggests a close evolutionary relationship between virus and vector. Another example of this relationship is the ability of these viruses to grow in invertebrate cell culture, where replication usually results in a steady state, persistent infection, often without cytopathic effect. Yields of virus from insect cell culture vary but are generally similar to yields in vertebrate cells. Replication kinetics are comparable between insect and vertebrate cell lines, despite differences in incubation temperature. Both vertebrate and insect cell culture systems continue to play a significant role in flavivirus isolation and the diagnosis of disease caused by these agents. Additionally, these culture systems permit the study of flavivirus attachment, penetration, replication, and release from cells and have been instrumental in the production and characterization of live-attenuated vaccines. Both vertebrate and insect cell culture systems will continue to play a significant role in basic and applied flavivirus research in the future.
Key words: Flaviviridae, ecology, mosquito, tick, review, cell culture
References
- 1.Aihara S., Rao C., Yu Y-X., et al. Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes. 1991;5:95–109. doi: 10.1007/BF00571925. [DOI] [PubMed] [Google Scholar]
- 2.Ao J., Yu Y-X., Tang Y. S., et al. Selection of a better and highly attenuated live vaccine virus strain of Japanese encephalitis. II. Safety and immunogenicity of live vaccine SA14-14-2 observed in inoculated children. Chin. J. Microbiol. Immunol. 1983;3:245–253. [Google Scholar]
- 3.Barrett A. D. T. Yellow fever vaccines. Bull. Inst. Pasteur. 1987;85:103–124. [Google Scholar]
- 4.Barrett A. D. T., Monath T. P., Cropp C. B., et al. Attenuation of wild-type yellow fever virus by passage in HeLa cells. J. Gen. Virol. 1990;71:2301–2306. doi: 10.1099/0022-1317-71-10-2301. [DOI] [PubMed] [Google Scholar]
- 5.Blok J., McWilliam S. M., Butler H. C., et al. Comparison of a dengue-2 virus and its candidate vaccine derivative: sequence relationships with the flaviviruses and other viruses. Virology. 1992;187:573–590. doi: 10.1016/0042-6822(92)90460-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Bray M., Lai C-J. Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology. 1991;185:505–508. doi: 10.1016/0042-6822(91)90809-P. [DOI] [PubMed] [Google Scholar]
- 7.Bray M., Lai C-J. Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc. Natl. Acad. Sci. USA. 1991;88:10342–10364. doi: 10.1073/pnas.88.22.10342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Bray M., Zhao B. T., Markoff L., et al. Mice immunized with recombinant vaccinia virus expressing dengue-4 virus structural proteins with or without nonstructural protein NS1 are protected against fatal dengue virus encephalitis. J. Virol. 1989;63:2853–2856. doi: 10.1128/jvi.63.6.2853-2856.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Brinton M. A. Replication of flaviviruses. In: Schlesinger S., Schlesinger M. J., editors. The Togaviridae and Flaviviridae. New York: Plenum Press; 1986. pp. 327–365. [Google Scholar]
- 10.Brinton M. A., Davis J., Schaefer D. Characterization of West Nile virus persistent infections in genetically resistant and susceptible mouse cells. II. Generation of temperature-sensitive mutants. Virology. 1985;140:152–158. doi: 10.1016/0042-6822(85)90454-4. [DOI] [PubMed] [Google Scholar]
- 11.Calisher C. H., Karabatsos N., Dalrymple J. M., et al. Antigenic relationship between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 1989;70:37–43. doi: 10.1099/0022-1317-70-1-37. [DOI] [PubMed] [Google Scholar]
- 12.Cane P. A., Gould E. A. Reduction of yellow fever virus mouse neurovirulence by immunization with a bacterially synthesized nonstructural protein (NS1) fragment. J. Gen. Virol. 1988;69:1241–1246. doi: 10.1099/0022-1317-69-6-1241. [DOI] [PubMed] [Google Scholar]
- 13.Cerny V. The role of mammals in natural foci of tick-borne encephalitis in central Europe. Folia Parasitol. 1976;22:271–273. [PubMed] [Google Scholar]
- 14.Chambers T. J., Hahn C. S., Galler R., et al. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. [DOI] [PubMed] [Google Scholar]
- 15.Chappell W. A., Calisher C. H., Toole R. F., et al. Comparison of three methods used to isolate dengue virus type 2. Appl. Microbiol. 1971;22:1100–1103. doi: 10.1128/am.22.6.1100-1103.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Corner L. C., Ng M. L. The influence of higher temperature on dengue-2 virus infected C6/36 mosquito cell line. Can. J. Microbiol. 1987;33:863–869. doi: 10.1139/m87-151. [DOI] [PubMed] [Google Scholar]
- 17.Cornet M., Robin Y., Heme G., et al. Une poussée épizootique de fièvre jaune selvatique du Senegal oriental: isôlement du virus de lots de moustiques adultes male et femelles. Med. Malad. Infect. 1979;9:63–66. doi: 10.1016/S0399-077X(79)80024-4. [DOI] [Google Scholar]
- 18.Crowell R. L., Landau B. J. Receptors in the initiation of picornavirus infections. Compr. Virol. 1983;18:1–42. [Google Scholar]
- 19.Dalgleish A. G., Beverley P. C. L., Clapham P. R., et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- 20.Davey M. W., Bennett D. P., Dalgarno L. The growth of two toga-viruses in cultured mosquito and vertebrate cells. J. Gen. Virol. 1973;20:225–225. doi: 10.1099/0022-1317-20-2-225. [DOI] [PubMed] [Google Scholar]
- 21.Davis N. L., Powell N., Greenwald G. F., et al. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology. 1991;183:20–31. doi: 10.1016/0042-6822(91)90114-Q. [DOI] [PubMed] [Google Scholar]
- 22.Davis N. L., Willis L. V., Smith J. F., et al. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology. 1989;171:189–204. doi: 10.1016/0042-6822(89)90526-6. [DOI] [PubMed] [Google Scholar]
- 23.Desprès P., Girard M., Bouloy M. Characterization of yellow fever virus proteins E and NS1 expressed in vero andSpodoptera frugiperda cells. J. Gen. Virol. 1991;72:1331–1342. doi: 10.1099/0022-1317-72-6-1331. [DOI] [PubMed] [Google Scholar]
- 24.Deubel V., Kinney R. M., Esposito J. J., et al. Dengue 2 virus envelope protein expressed by a recombinant vaccinia virus fails to protect monkeys against dengue. J. Gen. Virol. 1988;69:1921–1929. doi: 10.1099/0022-1317-69-8-1921. [DOI] [PubMed] [Google Scholar]
- 25.Dimmock N. J. Initial stages in infection with animal viruses. J. Gen. Virol. 1982;59:1–22. doi: 10.1099/0022-1317-59-1-1. [DOI] [PubMed] [Google Scholar]
- 26.Dittmar D., Castro A., Haines H. Replication of dengue virus in cultured mosquito cells at suboptimal temperature. Proc. Soc. Exp. Biol. Med. 1982;170:68–74. doi: 10.3181/00379727-170-41399. [DOI] [PubMed] [Google Scholar]
- 27.Dulbecco R. Production of plaques in monolayer tissue cultures caused by single particles of an animal virus. Proc. Natl. Acad. Sci. USA. 1952;38:747–752. doi: 10.1073/pnas.38.8.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Dutary D. E., LeDuc J. W. Transovarial transmission of yellow fever virus by a sylvatic vector,Haemagogus equinus. Trans. R. Soc. Trop. Med. Hyg. 1992;75:128–128. doi: 10.1016/0035-9203(81)90036-5. [DOI] [PubMed] [Google Scholar]
- 29.Eckels K. H., Kliks S. C., Dubois D. R., et al. The association of enhancing antibodies with seroconversion in humans receiving a dengue-2 live-virus vaccine. J. Immunol. 1985;135:4201–4203. [PubMed] [Google Scholar]
- 30.Eckels K. H., Yu Y-X., Dubois D. R., et al. Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14-14-2; adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine. 1988;6:513–518. doi: 10.1016/0264-410X(88)90103-X. [DOI] [PubMed] [Google Scholar]
- 31.Enders J. F., Weller T. H., Robbins F. C. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science. 1949;109:85–87. doi: 10.1126/science.109.2822.85. [DOI] [PubMed] [Google Scholar]
- 32.Falgout B., Bray M., Schlesinger J. J., et al. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J. Virol. 1990;64:4356–4363. doi: 10.1128/jvi.64.9.4356-4363.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Fields B. N., Greene M. I. Genetic and molecular mechanisms of viral pathogenesis: implications for prevention and treatment. Nature. 1982;300:19–23. doi: 10.1038/300019a0. [DOI] [PubMed] [Google Scholar]
- 34.Fields B. N., Knipe D. M. Introduction. In: Fields B. N., editor. Virology. 2nd ed. New York: Raven Press, Ltd.; 1990. pp. 3–7. [Google Scholar]
- 35.Fonseca B. A. L., Khoshnood K., Shope R. E., et al. Flavivirus type-specific antigens produced from fusions of a portion of the E protein gene with theEscherichia coli TRPE gene. Am. J. Trop. Med. Hyg. 1991;44:500–508. doi: 10.4269/ajtmh.1991.44.500. [DOI] [PubMed] [Google Scholar]
- 36.Fukunaga T., Okuno Y., Tadano M., et al. Neutralization characteristics of dengue viruses isolated in mosquito culture and suckling mouse brain from a case of laboratory dengue infection. Biochem. J. 1982;25:139–147. [PubMed] [Google Scholar]
- 37.Goldfarb L. G. Epidemiological models of tick-borne infections (Acari: Ixodidae and Argasidae) J. Med. Entomol. 1986;23:125–131. doi: 10.1093/jmedent/23.2.125. [DOI] [PubMed] [Google Scholar]
- 38.Gollins S. W., Porterfield J. S. Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J. Gen. Virol. 1985;66:1969–1982. doi: 10.1099/0022-1317-66-9-1969. [DOI] [PubMed] [Google Scholar]
- 39.Gollins S. W., Porterfield J. S. The uncoating and infectivity of the flavivirus West Nile virus on interaction with cells: effects of pH and ammonium chloride. J. Gen. Virol. 1986;67:1941–1950. doi: 10.1099/0022-1317-67-9-1941. [DOI] [PubMed] [Google Scholar]
- 40.Gonzalez-Scarano F., Beaty B. J., Sundin D., et al. Genetic determinants of the virulence and infectivity of La Crosse virus. Microb. Pathog. 1988;4:1–7. doi: 10.1016/0882-4010(88)90041-1. [DOI] [PubMed] [Google Scholar]
- 41.Grady L. J., Kinch W. Two monoclonal antibodies against La Crosse virus show host-dependent neutralizing activity. J. Gen. Virol. 1985;66:2773–2776. doi: 10.1099/0022-1317-66-12-2773. [DOI] [PubMed] [Google Scholar]
- 42.Gresikova M., Beran G. W. Tick-borne encephalitis. In: Beran G. W., editor. CRC handbook series in zoonoses, section B: viral zoonoses, vol. I. Boca Raton, FL: CRC Press; 1981. pp. 201–208. [Google Scholar]
- 43.Guirakhoo F., Heinz F. X., Mandl C. W., et al. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J. Gen. Virol. 1991;72:1323–1329. doi: 10.1099/0022-1317-72-6-1323. [DOI] [PubMed] [Google Scholar]
- 44.Hahn C. S., Dalrymple J. M., Strauss J. H., et al. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc. Natl. Acad. Sci. USA. 1987;84:2019–2023. doi: 10.1073/pnas.84.7.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Hahn C. S., Rice C. M., Strauss J. H. Comparison of the Asibi and 17D strains of yellow fever virus. Vaccines 87. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1987. pp. 316–321. [Google Scholar]
- 46.Hahn Y. S., Lenches E. M., Galler R., et al. Expression of the structural proteins of dengue 2 virus and yellow fever virus by recombinant vaccinia viruses. Arch. Virol. 1990;115:251–265. doi: 10.1007/BF01310534. [DOI] [PubMed] [Google Scholar]
- 47.Haishi S., Imai H., Hirai K., et al. Expression of envelope glycoprotein (E) of Japanese encephalitis virus by recombinant vaccinia virus. Acta Virol. 1989;33:497–503. [PubMed] [Google Scholar]
- 48.Halstead S. B., Diwan A. R., Marchette N. J., et al. Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. I. Attributes of uncloned virus at different passage levels. Am. J. Trop. Med. Hyg. 1984;33:654–665. doi: 10.4269/ajtmh.1984.33.654. [DOI] [PubMed] [Google Scholar]
- 49.Halstead S. B., Eckels K. H., Putvatana R., et al. Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. IV. Characterization of a vaccine candidate in fetal rhesus lung cells. Am. J. Trop. Med. Hyg. 1984;33:679–683. doi: 10.4269/ajtmh.1984.33.679. [DOI] [PubMed] [Google Scholar]
- 50.Halstead S. B., Marchette N. J., Diwan A. R., et al. Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. II. Attributes of virus cloned at different dog kidney passage levels. Am. J. Trop. Med. Hyg. 1984;33:666–671. doi: 10.4269/ajtmh.1984.33.666. [DOI] [PubMed] [Google Scholar]
- 51.Halstead S. B., Marchette N. J., Diwan A. R., et al. Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. III. Reversion to virulence by passage of cloned virus in fetal rhesus lung cells. Am. J. Trop. Med. Hyg. 1984;33:672–678. doi: 10.4269/ajtmh.1984.33.672. [DOI] [PubMed] [Google Scholar]
- 52.Hase T., Summers P. L., Eckels K. H. Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch. Virol. 1989;104:129–143. doi: 10.1007/BF01313814. [DOI] [PubMed] [Google Scholar]
- 53.Hase T., Summers P. L., Eckels K. H., et al. Maturation process of Japanese encephalitis virus in cultured mosquito cells in vitro and mouse brain cells in vivo. Arch. Virol. 1987;96:135–151. doi: 10.1007/BF01320956. [DOI] [PubMed] [Google Scholar]
- 54.Hoke C. H., Jr., Malinoski F. J., Eckels K. H., et al. Preparation of an attenuated dengue 4 (341750 Carib) virus vaccine. II. Safety and immunogenicity in humans. Am. J. Trop. Med. Hyg. 1990;43:219–226. doi: 10.4269/ajtmh.1990.43.219. [DOI] [PubMed] [Google Scholar]
- 55.Hsu S. H. Growth of arboviruses in arthropod cell cultures: comparative studies. I. Preliminary observations on growth of arboviruses in a newly established mile of mosquito cell (Culex quinquefasciatus Say) Curr. Topics Microbiol. Immunol. 1971;55:140–148. doi: 10.1007/978-3-642-65224-0_23. [DOI] [PubMed] [Google Scholar]
- 56.Igarashi A. Isolation of a Singh’sAedes albopictus cell clone sensitive to dengue and chikungunya viruses. J. Gen. Virol. 1978;40:531–544. doi: 10.1099/0022-1317-40-3-531. [DOI] [PubMed] [Google Scholar]
- 57.Igarashi A., Buei K., Ueba N., et al. Isolation of viruses from femaleCulex tritaeniorhynchus inAedes albopictus cell cultures. Am. J. Trop. Med. Hyg. 1981;30:449–460. doi: 10.4269/ajtmh.1981.30.449. [DOI] [PubMed] [Google Scholar]
- 58.Jacobs S. C., Stephenson J. R., Wilkinson G. W. G. High-level expression of the tick-borne encephalitis virus NS1 protein by using an adenovirus-based vector: protection elicited in a murine model. J. Virol. 1992;66:2086–2095. doi: 10.1128/jvi.66.4.2086-2095.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.James W. S., Millican D. Host-adaptive antigenic variation in bunyaviruses. J. Gen. Virol. 1986;67:2803–2806. doi: 10.1099/0022-1317-67-12-2803. [DOI] [PubMed] [Google Scholar]
- 60.Johnston R. E., Smith J. F. Selection for accelerated penetration in cell culture coselects for attenuated mutants of Venezuelan equine encephalitis virus. Virology. 1988;162:437–443. doi: 10.1016/0042-6822(88)90484-9. [DOI] [PubMed] [Google Scholar]
- 61.Karabatsos N. General characteristics and antigenic relationships. In: Monath T. P., editor. St. Louis encephalitis. Washington, DC: American Public Health Association, Inc.; 1980. pp. 105–158. [Google Scholar]
- 62.Kimura T., Gollins S. W., Porterfield J. S. The effect of pH on the early interaction of West Nile virus with P388D1 cells. J. Gen. Virol. 1986;67:2423–2433. doi: 10.1099/0022-1317-67-11-2423. [DOI] [PubMed] [Google Scholar]
- 63.Klatzmann D., Barré-Sinoussi F., Nugeyre M. T., et al. Selective tropism of lymphadenopathy associated virus (LAV) for helper-induced T lymphocytes. Science. 1984;225:59–63. doi: 10.1126/science.6328660. [DOI] [PubMed] [Google Scholar]
- 64.Kuno G. Persistent infection of a nonvector mosquito cell line (TRA-171) with dengue viruses. Intervirology. 1982;18:45–55. doi: 10.1159/000149303. [DOI] [PubMed] [Google Scholar]
- 65.Kuno G., Gubler D. J., Vélez M., et al. Comparative sensitivity of three mosquito cell lines for isolation of dengue viruses. Bull. WHO. 1985;63:279–286. [PMC free article] [PubMed] [Google Scholar]
- 66.Kurane I., Kontny U., Janus J., et al. Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch. Virol. 1990;110:91–101. doi: 10.1007/BF01310705. [DOI] [PubMed] [Google Scholar]
- 67.Lai C-J., Zhao B., Hori H., et al. Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc. Natl. Acad. Sci. USA. 1991;88:5139–5143. doi: 10.1073/pnas.88.12.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Lentz T. L., Burrage T. G., Smith A. L., et al. The acetylcholine receptor as a cellular receptor for rabies virus. Yale J. Biol. Med. 1983;56:315–322. [PMC free article] [PubMed] [Google Scholar]
- 69.Luckow V. A., Summers M. D. Trends in the development of baculovirus expression vectors. Bio/Technology. 1988;6:47–55. doi: 10.1038/nbt0188-47. [DOI] [Google Scholar]
- 70.Mackett M., Smith G. L., Moss B. Vaccinia virus: a selectable eukaryotic cloning vector. Proc. Natl. Acad. Sci. USA. 1982;79:7415–7419. doi: 10.1073/pnas.79.23.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Mackett M., Smith G. L., Moss B. The construction and characterization of vaccinia virus recombinants expressing foreign genes. In: Glover D. M., editor. DNA cloning, vol. 2. Washington, DC: IRL Press; 1985. pp. 191–211. [Google Scholar]
- 72.Mandl C. W., Kunz C., Heinz F. X. Presence of poly(A) in a flavivirus: significant differences between the 3′ noncoding regions of the genomic RNAs of tick-borne encephalitis virus strains. J. Virol. 1991;65:4070–4077. doi: 10.1128/jvi.65.8.4070-4077.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Marchette N. J., Dubois D. R., Larsen L. K., et al. Preparation of an attenuated dengue 4 (341750 Carib) virus vaccine. I. Pre-clinical studies. Am. J. Trop. Med. Hyg. 1990;43:212–218. doi: 10.4269/ajtmh.1990.43.212. [DOI] [PubMed] [Google Scholar]
- 74.Marsh M., Helenius A. Virus entry into animal cells. Adv. Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Mason P. W., Dalrymple J. M., Gentry M. K., et al. Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J. Gen. Virol. 1989;70:2037–2049. doi: 10.1099/0022-1317-70-8-2037. [DOI] [PubMed] [Google Scholar]
- 76.Mason P. W., Pincus S., Fournier M. J., et al. Japanese encephalitis virus—vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 1991;180:294–305. doi: 10.1016/0042-6822(91)90034-9. [DOI] [PubMed] [Google Scholar]
- 77.Matsuura Y., Possee R. D., Overton H. A., et al. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J. Gen. Virol. 1987;68:1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
- 78.McCown J., Cochran M., Putnak R., et al. Protection of mice against lethal Japanese encephalitis with a recombinant baculovirus vaccine. Am. J. Trop. Med. Hyg. 1990;42:491–499. doi: 10.4269/ajtmh.1990.42.491. [DOI] [PubMed] [Google Scholar]
- 79.Megret F., Hugnot J. P., Falconar A., et al. Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology. 1992;187:480–491. doi: 10.1016/0042-6822(92)90450-4. [DOI] [PubMed] [Google Scholar]
- 80.Men R., Bray M., Lai C-J. Carboxy-terminally truncated dengue virus envelope glycoproteins expressed on the cell surface and secreted extracellularly exhibit increased immunogenicity in mice. J. Virol. 1991;65:1400–1407. doi: 10.1128/jvi.65.3.1400-1407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Miller B. R., Adkins D. Biological characterization of plaque-size variants of yellow fever virus in mosquitoes and mice. Acta Virol. 1988;32:227–234. [PubMed] [Google Scholar]
- 82.Monath T. P. Flaviviruses. In: Fields B. N., Knipe D. M., editors. Virology. 2nd ed. New York: Raven Press, Ltd.; 1990. pp. 763–814. [Google Scholar]
- 83.Monath T. P. Yellow fever:Victor, Victoria? conqueror, conquest? epidemics and research in the last forty years and prospects for the future. Am. J. Trop. Med. Hyg. 1991;45:1–43. doi: 10.4269/ajtmh.1991.45.1. [DOI] [PubMed] [Google Scholar]
- 84.Moss B., Flexner C. Vaccinia virus expression vectors. Ann. Rev. Immunol. 1987;5:305–324. doi: 10.1146/annurev.iy.05.040187.001513. [DOI] [PubMed] [Google Scholar]
- 85.Murphy F. A. Togavirus morphology and morphogenesis. In: Schlesinger R. W., editor. The togaviruses: biology, structure, replication. New York: Academic Press; 1980. pp. 241–316. [Google Scholar]
- 86.Ng M. L., Lau L. C. L. Possible involvement of receptors in the entry of Kunjin virus into vero cells. Arch. Virol. 1988;100:199–211. doi: 10.1007/BF01487683. [DOI] [PubMed] [Google Scholar]
- 87.Nitayaphan S., Grant J. A., Chang G-J. J., et al. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology. 1990;177:541–552. doi: 10.1016/0042-6822(90)90519-W. [DOI] [PubMed] [Google Scholar]
- 88.Panicali D., Paoletti E. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. USA. 1982;79:4927–4931. doi: 10.1073/pnas.79.16.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Parrish C. R., Coia G., Hill A., et al. Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression. J. Gen. Virol. 1991;72:1645–1653. doi: 10.1099/0022-1317-72-7-1645. [DOI] [PubMed] [Google Scholar]
- 90.Pincus S., Mason P. W., Konishi E., et al. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology. 1992;187:290–297. doi: 10.1016/0042-6822(92)90317-I. [DOI] [PubMed] [Google Scholar]
- 91.Poidinger M., Coelen R. J., Mackenzie J. S. Persistent infection of vero cells by the flavivirus Murray Valley encephalitis virus. J. Gen. Virol. 1991;72:573–578. doi: 10.1099/0022-1317-72-3-573. [DOI] [PubMed] [Google Scholar]
- 92.Putnak J. R., Schlesinger J. J. Protection of mice against yellow fever virus encephalitis by immunization with a vaccinia virus recombinant encoding the yellow fever virus non-structural proteins, NS1, NS2a, and NS2b. J. Gen. Virol. 1990;71:1697–1702. doi: 10.1099/0022-1317-71-8-1697. [DOI] [PubMed] [Google Scholar]
- 93.Randolph V. B., Hardy J. L. Establishment and characterization of St. Louis encephalitis virus persistent infections inAedes andCulex mosquito cell lines. J. Gen. Virol. 1988;69:2189–2198. doi: 10.1099/0022-1317-69-9-2189. [DOI] [PubMed] [Google Scholar]
- 94.Randolph V. B., Winkler G., Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology. 1990;174:450–458. doi: 10.1016/0042-6822(90)90099-D. [DOI] [PubMed] [Google Scholar]
- 95.Rice C. M., Grakoui A., Galler R., et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989;1:285–296. [PubMed] [Google Scholar]
- 96.Rice C. R., Strauss E. G., Strauss J. H. Structure of the flavivirus genome. In: Schlesinger S., Schlesinger M. J., editors. The Togaviridae and Flaviviridae. New York: Plenum Publishing Corp.; 1986. pp. 279–327. [Google Scholar]
- 97.Rusche J. R., Lynn D. L., Robert-Guroff M., et al. Humoral immune response to the entire human immunodeficiency virus glycoprotein made in insect cells. Proc. Natl. Acad. Sci. USA. 1987;84:6924–6928. doi: 10.1073/pnas.84.19.6924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Russell P. K., Brandt W. E., Dalrymple J. M. Chemical and antigenic structure of flaviviruses. In: Schlesinger R. W., editor. The Togaviruses: biology, structure, replication. New York: Academic Press; 1980. pp. 503–529. [Google Scholar]
- 99.Sauter C. Distinction of influenza viruses of different host cell origin. Experientia. 1989;45:594–596. doi: 10.1007/BF01990517. [DOI] [PubMed] [Google Scholar]
- 100.Schlesinger S., Schlesinger M. J. Replication of Togaviridae and Flaviviridae. In: Fields B. N., editor. Virology. 2nd ed. New York: Raven Press; 1990. pp. 697–711. [Google Scholar]
- 101.Sérié C., Andral L., Poirier A., et al. Studies on yellow fever in Ethiopia. 6. Epidemiological study. Bull. WHO. 1968;38:879–884. [PMC free article] [PubMed] [Google Scholar]
- 102.Singh K. R. P., Paul S. D. Multiplication of arboviruses in cell lines fromAedes albopictus andAedes aegypti. Curr. Sci. 1968;37:65–67. [Google Scholar]
- 103.Singh K. R. P., Paul S. D. Isolation of dengue viruses inAedes albopictus cell cultures. Bull. WHO. 1969;40:982–983. [PMC free article] [PubMed] [Google Scholar]
- 104.Smith A. L., Tignor G. H. Host cell receptors for two strains of Sindbis virus. Arch. Virol. 1980;66:11–26. doi: 10.1007/BF01315041. [DOI] [PubMed] [Google Scholar]
- 105.Stevens T. M., Schlesinger R. W. Arbovirus replication in mosquito cell lines (Singh) grown in monolayer or suspension culture. Proc. Soc. Exp. Biol. Med. 1970;134:356–361. doi: 10.3181/00379727-134-34793. [DOI] [PubMed] [Google Scholar]
- 106.Stokes A., Bauer J. H., Hudson N. P. Experimental transmission of yellow fever to laboratory animals. Am. J. Trop. Med. 1928;8:103–164. [Google Scholar]
- 107.Strauss J. H., Preugschat F., Strauss E. G. The structure and function of the flavivirus and pestivirus genomes. Viral hepatitis and liver disease: Proceedings of the 1990 International Symposium on Viral Hepatitis and Liver Disease: comtemporary issues and future prospects. New York: Willians & Wilkins; 1991. pp. 333–344. [Google Scholar]
- 108.Summers P. L., Cohen W. H., Ruiz M. M., et al. Flaviviruses can mediate fusion from without inAedes albopictus mosquito cell cultures. Virus Res. 1989;12:383–392. doi: 10.1016/0168-1702(89)90095-6. [DOI] [PubMed] [Google Scholar]
- 109.Tashiro M., Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs. Infect. Immun. 1983;39:879–888. doi: 10.1128/iai.39.2.879-888.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Theiler M., Smith H. H. The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937;65:787–800. doi: 10.1084/jem.65.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Trent D. W., Naeve C. W. Biochemistry and replication. In: Monath T. P., editor. St. Louis encephalitis. Washington, DC: American Public Health Association; 1980. pp. 159–199. [Google Scholar]
- 112.Trent D. W., Qureshi A. A. Structural and nonstructural proteins of Saint Louis encephalitis virus. J. Virol. 1971;7:379–388. doi: 10.1128/jvi.7.3.379-388.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Wengler G., Wengler G. Cell-associated West Nile flavivirus is covered with E+Pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J. Virol. 1989;63:2521–2526. doi: 10.1128/jvi.63.6.2521-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Westaway E. G., Brinton M. A., Gaidamovich S. Ya., et al. Flaviviridae. Intervirology. 1985;24:183–192. doi: 10.1159/000149642. [DOI] [PubMed] [Google Scholar]
- 115.White L. A. Susceptibility ofAedes albopictus C6/36 cells to viral infection. J. Clin. Microbiol. 1987;25:1221–1224. doi: 10.1128/jcm.25.7.1221-1224.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Yasuda A., Kimura-Kuroda J., Ogimoto M., et al. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express preM and E glycoproteins of Japanese encephalitis virus. J. Virol. 1990;64:2788–2795. doi: 10.1128/jvi.64.6.2788-2795.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Yu Y-X., Wu P. F., Ao J., et al. Selection of a better immunogenic and highly attenuated live virus strain of Japanese encephalitis. I. Some biological characteristics of SA14-14-2 mutant. Chin. J. Microbiol. Immunol. 1981;1:77–86. [Google Scholar]
- 118.Yu Y-X., Zhang G. M., Guo Y. P., et al. Safety of a live-attenuated Japanese encephalitis virus vaccine (SA14-14-2) for children. Am. J. Trop. Med. Hyg. 1988;39:214–217. doi: 10.4269/ajtmh.1988.39.214. [DOI] [PubMed] [Google Scholar]
- 119.Zhao B., Prince G., Horswood R., et al. Expression of dengue virus structural proteins and nonstructural protein NS1 by a recombinant vaccinia virus. J. Virol. 1987;61:4019–4022. doi: 10.1128/jvi.61.12.4019-4022.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]