Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Keywords: electron microscopy, viral structure, viral morphology, viral diagnosis
Footnotes
This article is published with open access at Springerlink.com
References
- 1.Palese P, Wang T T. H5N1 influenza viruses: facts, not fear. Proc Natl Acad Sci USA. 2012;109:2211–2213. doi: 10.1073/pnas.1121297109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Woo P C, Lau S K, Wong B H, et al. Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci USA. 2012;109:5435–5440. doi: 10.1073/pnas.1119972109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Biel S S, Gelderblom H R. Diagnostic electron microscopy is still a timely and rewarding method. J Clin Virol. 1999;13:105–119. doi: 10.1016/S1386-6532(99)00027-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Biel S S, Gelderblom H R. Virus Culture-A Practical Approach. New York: Oxford University Press; 1999. Electron microscopy of viruses; pp. 111–147. [Google Scholar]
- 5.Goldsmith C S, Miller S E. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev. 2009;22:552–563. doi: 10.1128/CMR.00027-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Peiris J S, Lai S T, Poon L L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Song J D, Qu J G, Lu Z Z, et al. Methods and applications in improving virus detection sensitivity by TEM with negative staining. Bing Du Xue Bao. 2010;26:410–413. [PubMed] [Google Scholar]
- 8.Hazelton P R, Gelderblom H R. Electron microscopy for rapid diagnosis of infectious agents in emergent situations. Emerg Infect Dis. 2003;9:294–303. doi: 10.3201/eid0903.020327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Nzounza P, Chazal M, Guedj C, et al. The scaffolding protein Dlg1 is a negative regulator of cell-free virus infectivity but not of cell-to-cell HIV-1 transmission in T cells. PLoS ONE. 2012;7:e30130. doi: 10.1371/journal.pone.0030130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Fontana J, Cardone G, Heymann J B, et al. Structural changes in Influenza virus at low pH characterized by cryo-electron tomography. J Virol. 2012;86:2919–2929. doi: 10.1128/JVI.06698-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Flewett T H, Beards G M, Brown D W, et al. The diagnostic gap in diarrhoeal aetiology. Ciba Found Symp. 1987;128:238–249. doi: 10.1002/9780470513460.ch14. [DOI] [PubMed] [Google Scholar]
- 12.Kausche G, Pfankuch E, Ruska H. Die Sichtbarmachung von pflanzlichem Virus im Ubermikroskop. Naturwissenschaften. 1939;27:292–299. [Google Scholar]
- 13.Hung T, Yao J E, Li W Z, et al. Ultrastructure and Electron Microscopy in Biological Medicine. Beijing: Science Press; 1980. [Google Scholar]
- 14.Knipe D M, Howley P M, Griffin D E, et al. Fields’ Virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins (a Wolters Kluwer Business); 2007. [Google Scholar]
- 15.Hung T. Atlas of Hemorrhagic Fever with Renal Syndrome. Beijing: Science Press; 1988. [Google Scholar]
- 16.Monastyrska I, Ulasli M, Rottier P J, et al. An autophagy-independent role for LC3 in equine arteritis virus replication. Autophagy. 2013;9:164–174. doi: 10.4161/auto.22743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Doane F W. Virus morphology as an aid for rapid diagnosis. Yale J Biol Med. 1980;53:19–25. [PMC free article] [PubMed] [Google Scholar]
- 18.Biel S S, Nitsche A, Kurth A, et al. Detection of human polyoma-viruses in urine from bone marrow transplant patients: comparison of electron microscopy with PCR. Clin Chem. 2004;50:306–312. doi: 10.1373/clinchem.2003.024539. [DOI] [PubMed] [Google Scholar]
- 19.Hartjen P, Frerk S, Hauber I, et al. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. AIDS Res Ther. 2012;9:2. doi: 10.1186/1742-6405-9-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Hung T, Xia S M, Song G, et al. Viruses of classical and mild forms of haemorrhagic fever with renal syndrome isolated in China have similar bunyavirus-like morphology. Lancet. 1983;1:589–591. [PubMed] [Google Scholar]
- 21.van Regenmortel M H V, Bishop D H L, Carstens E B, et al. 7th Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2000. Virus taxonomy: classification and nomenclature of viruses. [Google Scholar]
- 22.Schroeder J A, Gelderblom H R, Hauroeder B, et al. Microwave-assisted tissue processing for same-day EM-diagnosis of potential bioterrorism and clinical samples. Micron. 2006;37:577–590. doi: 10.1016/j.micron.2005.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Anson M L, Stanley W M. Some effects of iodine and other reagents on the structure and activity of Tobacco mosaic virus. J Gen Physiol. 1941;24:679–690. doi: 10.1085/jgp.24.6.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Mudd S, Polevitzky K, Anderson T F, et al. Bacterial morphology as shown by the electron microscope: II. The bacterial cell-wall in the genus Bacillus. J Bacteriol. 1941;42:251–264. doi: 10.1128/jb.42.2.251-264.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Almeida J D, Waterson A P. Some implications of a morphologically oriented classification of viruses. Arch Gesamte Virusforsch. 1970;32:66–72. doi: 10.1007/BF01241521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Hung T, Xia S M, Zhao T X, et al. Morphological evidence for identifying the viruses of hemorrhagic fever with renal syndrome as candidate members of the Bunyaviridae family. Arch Virol. 1983;78:137–44. doi: 10.1007/BF01310869. [DOI] [PubMed] [Google Scholar]
- 27.Nagler F P, Rake G. The use of the electron microscope in diagnosis of variola, vaccinia, and varicella. J Bacteriol. 1948;55:45–51. doi: 10.1128/jb.55.1.45-51.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Welch A B. Purification, morphology and partial characterization of a reovirus-like agent associated with neonatal calf diarrhea. Can J Comp Med. 1971;35:195–202. [PMC free article] [PubMed] [Google Scholar]
- 29.Reagan R L, Brueckner A L. Morphological observations by electron microscopy of the Lansing strain of poliomyelitis virus after propagation in the Swiss albino mouse. Tex Rep Biol Med. 1952;10:425–428. [PubMed] [Google Scholar]
- 30.Gust I D, Kaldor J, Cross G F, et al. Virus-like particles associated with a faecal antigen from hepatitis patients and with Australia antigen. Aust J Exp Biol Med Sci. 1971;49:1–9. doi: 10.1038/icb.1971.1. [DOI] [PubMed] [Google Scholar]
- 31.Kapikian A Z, Wyatt R G, Dolin R, et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol. 1972;10:1075–1081. doi: 10.1128/jvi.10.5.1075-1081.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Melnick J L, Phillips C A. Enteroviruses: vaccines, epidemiology, diagnosis, classification. CRC Crit Rev Clin Lab Sci. 1970;1:87–118. doi: 10.3109/10408367009014720. [DOI] [PubMed] [Google Scholar]
- 33.Dane D S, Cameron C H, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970;1:695–698. doi: 10.1016/s0140-6736(70)90926-8. [DOI] [PubMed] [Google Scholar]
- 34.Feinstone S M, Kapikian A Z, Purceli R H. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science. 1973;182:1026–1028. doi: 10.1126/science.182.4116.1026. [DOI] [PubMed] [Google Scholar]
- 35.Bishop R F, Davidson G P, Holmes I H, et al. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet. 1973;2:1281–1283. doi: 10.1016/s0140-6736(73)92867-5. [DOI] [PubMed] [Google Scholar]
- 36.Johnson K M, Lange J V, Webb P A, et al. Isolation and partial characterisation of a new virus causing acute haemorrhagic fever in Zaire. Lancet. 1977;1:569–571. doi: 10.1016/s0140-6736(77)92000-1. [DOI] [PubMed] [Google Scholar]
- 37.Hung T, Chen G M, Wang C G, et al. Rotavirus-like agent in adult non-bacterial diarrhoea in China. Lancet. 1983;2:1078–1079. [PubMed] [Google Scholar]
- 38.Goldsmith C S, Elliott L H, Peters C J, et al. Ultrastructural characteristics of Sin Nombre virus, causative agent of hantavirus pulmonary syndrome. Arch Virol. 1995;140:2107–2122. doi: 10.1007/BF01323234. [DOI] [PubMed] [Google Scholar]
- 39.Zaki S R, Greer P W, Coffield L M, et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol. 1995;146:552–579. [PMC free article] [PubMed] [Google Scholar]
- 40.Hyatt A D, Selleck P W. Ultrastructure of equine morbillivirus. Virus Res. 1996;43:1–15. doi: 10.1016/0168-1702(96)01307-x. [DOI] [PubMed] [Google Scholar]
- 41.Hyatt A D, Zaki S R, Goldsmith C S, et al. Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect. 2001;3:297–306. doi: 10.1016/s1286-4579(01)01383-1. [DOI] [PubMed] [Google Scholar]
- 42.Nicholls J M, Poon L L, Lee K C, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361:1773–1778. doi: 10.1016/S0140-6736(03)13413-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Bayer-Garner I B. Monkeypox virus: histologic, immunohistochemical and electron-microscopic findings. J Cutan Pathol. 2005;32:28–34. doi: 10.1111/j.0303-6987.2005.00254.x. [DOI] [PubMed] [Google Scholar]
- 44.Hung T, Chen G M, Wang C G, et al. Waterborne outbreak of rotavirus diarrhoea in adults in China caused by a novel rotavirus. Lancet. 1984;1:1139–1142. [PubMed] [Google Scholar]
- 45.Wong A H, Cheng P K, Lai M Y, et al. Virulence potential of fusogenic orthoreoviruses. Emerg Infect Dis. 2012;18:944–948. doi: 10.3201/eid1806.111688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Limonta D, Falcon V, Torres G, et al. Dengue virus identification by transmission electron microscopy and molecular methods in fatal dengue hemorrhagic fever. Infection. 2012;40:689–694. doi: 10.1007/s15010-012-0260-7. [DOI] [PubMed] [Google Scholar]
- 47.Wanat K A, Holler P D, Dentchev T, et al. Viral-associated trichodysplasia: characterization of a novel polyomavirus infection with therapeutic insights. Arch Dermatol. 2012;148:219–223. doi: 10.1001/archdermatol.2011.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Rossmann M G. Crystallography, evolution, and the structure of viruses. J Biol Chem. 2012;287:9552–9559. doi: 10.1074/jbc.X112.348961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Beniac D R, Melito P L, Devarennes S L, et al. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS ONE. 2012;7:e29608. doi: 10.1371/journal.pone.0029608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Carter S D, Surtees R, Walter C T, et al. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol. 2012;86:10914–10923. doi: 10.1128/JVI.01555-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Van Rooyen C E, Scott G D. Smallpox diagnosis with special reference to electron microscopy. Can J Public Health. 1948;39:467–477. [PubMed] [Google Scholar]
- 52.Chinese Academy of Medical Science. Atlas of Electron Micrographs for Medical Biologic. 5th ed. Beijing: Science Press; 1978. [Google Scholar]
- 53.Chen H, Williams H N. Sharing of prey: coinfection of a bacterium by a virus and a prokaryotic predator. MBio. 2012;3:e00051–12. doi: 10.1128/mBio.00051-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Prusiner S B. Prion Biology and Diseases. New York: Cold Spring Harbor Monograph Series; 2004. p. 41. [Google Scholar]
- 55.Prusiner S B. Prions. Proc Natl Acad Sci USA. 1998;95:13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Zhang Y, He J S, Wang X, et al. Administration of amyloid-beta42 oligomer-specific monoclonal antibody improved memory performance in SAMP8 mice. J Alzheimers Dis. 2011;23:551–561. doi: 10.3233/JAD-2010-091195. [DOI] [PubMed] [Google Scholar]
- 57.He J, Zhang Y, Hong T. Progress in the development of therapeutic antibodies targeting prion proteins and beta-amyloid peptides. Sci China Life Sci. 2010;53:959–963. doi: 10.1007/s11427-010-4043-z. [DOI] [PubMed] [Google Scholar]
- 58.Zhang Y, Wang X, He J S, et al. Preparation and characterization of a monoclonal antibody with high affinity for soluble Abeta oligomers. Hybridoma (Larchmt) 2009;28:349–354. doi: 10.1089/hyb.2009.0015. [DOI] [PubMed] [Google Scholar]
- 59.Isas J M, Luibl V, Johnson L V, et al. Soluble and mature amyloid fibrils in drusen deposits. Invest Ophthalmol Vis Sci. 2010;51:1304–1310. doi: 10.1167/iovs.09-4207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Jones P H, Mehta H V, Maric M, et al. Bone marrow stromal cell antigen 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo. 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo. Retrovirology. 2012;9:10. doi: 10.1186/1742-4690-9-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Hansman G S, Taylor D W, McLellan J S, et al. Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occluded in the viral particle. J Virol. 2012;86:3635–3646. doi: 10.1128/JVI.06868-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Sanchez E G, Quintas A, Perez-Nunez D, et al. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012;8:e1002754. doi: 10.1371/journal.ppat.1002754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Schelhaas M, Shah B, Holzer M, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog. 2012;8:e1002657. doi: 10.1371/journal.ppat.1002657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Patterson S, Russell W C. Ultrastructural and immunofluorescence studies of early events in adenovirus-HeLa cell interactions. J Gen Virol. 1983;64:1091–1099. doi: 10.1099/0022-1317-64-5-1091. [DOI] [PubMed] [Google Scholar]
- 65.Liu Z, Liu S, Cui J, et al. Transmission electron microscopy studies of cellular responses to entry of virions: one kind of natural nanobiomaterial. Int J Cell Biol. 2012;2012:596589. doi: 10.1155/2012/596589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Stoneham C A, Hollinshead M, Hajitou A. Clathrin-mediated endocytosis and subsequent endo-lysosomal trafficking of adenoassociated virus/phage. J Biol Chem. 2012;287:35849–35859. doi: 10.1074/jbc.M112.369389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Romero-Brey I, Merz A, Chiramel A, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012;8:e1003056. doi: 10.1371/journal.ppat.1003056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Ooms L S, Jerome W G, Dermody T S, et al. Reovirus replication protein mu2 influences cell tropism by promoting particle assembly within viral inclusions. J Virol. 2012;86:10979–10987. doi: 10.1128/JVI.01172-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Kolesnikova L, Heck S, Matrosovich T, et al. J Gen Virol. 2013. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. [DOI] [PubMed] [Google Scholar]
- 70.Houzet L, Gay B, Morichaud, et al. Intracellular assembly and budding of the Murine Leukemia Virus in infected cells. Retrovirology. 2006;3:12. doi: 10.1186/1742-4690-3-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Schubert U, Ott D E, Chertova E N, et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci USA. 2000;97:13057–13062. doi: 10.1073/pnas.97.24.13057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Huang C Y, Chiang S F, Lin T Y, et al. HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS ONE. 2012;7:e33657. doi: 10.1371/journal.pone.0033657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Boyapalle S, Wong T, Garay J, et al. Respiratory syncytial virus NS1 protein colocalizes with mitochondrial antiviral signaling protein MAVS following infection. PLoS ONE. 2012;7:e29386. doi: 10.1371/journal.pone.0029386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Le Sage V, Banfield B W. Dysregulation of autophagy in murine fibroblasts resistant to HSV-1 infection. PLoS ONE. 2012;7:e42636. doi: 10.1371/journal.pone.0042636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Lam S, Chen K C, Ng M M, et al. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication. PLoS ONE. 2012;7:e46396. doi: 10.1371/journal.pone.0046396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Alfonso V, Maroniche G A, Reca S R, et al. AcMNPV core gene ac109 is required for budded virion transport to the nucleus and for occlusion of viral progeny. PLoS ONE. 2012;7:e46146. doi: 10.1371/journal.pone.0046146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Nagel C H, Dohner K, Binz A, et al. Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of Herpes simplex virus. PLoS ONE. 2012;7:e44177. doi: 10.1371/journal.pone.0044177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Hung T, Zhou J Y, Tang Y M, et al. Identification of Hantaan virusrelated structures in kidneys of cadavers with haemorrhagic fever with renal syndrome. Arch Virol. 1992;122:187–199. doi: 10.1007/BF01321127. [DOI] [PubMed] [Google Scholar]
- 79.Friedlaender M, Moore D H, Koprowski H. Studies with the electron microscope of virus-host relationships in Ehrlich ascites tumor cells. II. The localization and possible development of anopheles A virus within the endoplasmic reticulum of the host cell. J Exp Med. 1955;102:371–378. doi: 10.1084/jem.102.4.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Friedlaender M, Moore D H, Love R, et al. Studies with the electron microscope of virus-host relationships in Ehrlich ascites tumor cells. I. The identification and structure of anopheles A virus. J Exp Med. 1955;102:361–370. doi: 10.1084/jem.102.4.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Ke P Y, Chen S S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Invest. 2011;121:37–56. doi: 10.1172/JCI41474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Geisbert T W, Jahrling P B. Differentiation of filoviruses by electron microscopy. Virus Res. 1995;39:129–150. doi: 10.1016/0168-1702(95)00080-1. [DOI] [PubMed] [Google Scholar]
- 83.Gasper-Smith N, Crossman D M, Whitesides J F, et al. Induction of plasma (TRAIL), TNFR-2, Fas ligand, and plasma microparticles after human immunodeficiency virus type 1 (HIV-1) transmission: implications for HIV-1 vaccine design. J Virol. 2008;82:7700–7710. doi: 10.1128/JVI.00605-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Doane F W, Anderson N, Chao J, et al. Two-hour embedding procedure for intracellular detection of viruses by electron microscopy. Appl Microbiol. 1974;27:407–410. doi: 10.1128/am.27.2.407-410.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Visser C E, Voute A B, Oosting J, et al. Microwave irradiation and cross-linking of collagen. Biomaterials. 1992;13:34–37. doi: 10.1016/0142-9612(92)90092-3. [DOI] [PubMed] [Google Scholar]
- 86.Webster P. Microwave-assisted processing and embedding for transmission electron microscopy. Methods Mol Biol. 2007;369:47–65. doi: 10.1007/978-1-59745-294-6_4. [DOI] [PubMed] [Google Scholar]
- 87.Ong H, Chandran V. Identification of gastroenteric viruses by electron microscopy using higher order spectral features. J Clin Virol. 2005;34:195–206. doi: 10.1016/j.jcv.2005.04.001. [DOI] [PubMed] [Google Scholar]
- 88.Zhang R, Hryc C F, Cong Y, et al. 4. A cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J. 2011;30:3854–3863. doi: 10.1038/emboj.2011.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Malet H, Canellas F, Sawa J, et al. Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nat Struct Mol Biol. 2012;19:152–157. doi: 10.1038/nsmb.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Liu J, Bartesaghi A, Borgnia M J, et al. Molecular architecture of native HIV-1 gp120 trimers. Nature. 2008;455:109–113. doi: 10.1038/nature07159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Provencher S W, Vogel R H. Three-dimensional reconstruction from electron micrographs of disordered specimens. I. Method. Ultramicroscopy. 1988;25:209–221. doi: 10.1016/0304-3991(88)90016-2. [DOI] [PubMed] [Google Scholar]
- 92.Sougrat R, Bartesaghi A, Lifson J D, et al. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog. 2007;3:e63. doi: 10.1371/journal.ppat.0030063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Subramaniam S, Bartesaghi A, Liu J, et al. Electron tomography of viruses. Curr Opin Struct Biol. 2007;17:596–602. doi: 10.1016/j.sbi.2007.09.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Vogel R H, Provencher S W. Three-dimensional reconstruction from electron micrographs of disordered specimens. II. Implementation and results. Ultramicroscopy. 1988;25:223–239. doi: 10.1016/0304-3991(88)90017-4. [DOI] [PubMed] [Google Scholar]
- 95.Ryner M, Stromberg J O, Soderberg-Naucler C, et al. Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching. Virol J. 2006;3:57. doi: 10.1186/1743-422X-3-57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Taube S, Rubin J R, Katpally U, et al. High-resolution X-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain. J Virol. 2010;84:5695–5705. doi: 10.1128/JVI.00316-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Carnall J M, Waudby C A, Belenguer A M, et al. Mechanosensitive self-replication driven by self-organization. Science. 2010;327:1502–1506. doi: 10.1126/science.1182767. [DOI] [PubMed] [Google Scholar]
- 98.Morgan G W, Hollinshead M, Ferguson B J, et al. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export. PLoS Pathog. 2010;6:e1000785. doi: 10.1371/journal.ppat.1000785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Cong Y, Baker M L, Jakana J, et al. 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA. 2010;107:4967–4972. doi: 10.1073/pnas.0913774107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Levy H C, Bostina M, Filman D J, et al. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol. 2010;84:4426–4441. doi: 10.1128/JVI.02393-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Austin S K, Dowd K A, Shrestha B, et al. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope. PLoS Pathog. 2012;8:e1002930. doi: 10.1371/journal.ppat.1002930. [DOI] [PMC free article] [PubMed] [Google Scholar]