Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2000;9(4):305–320. doi: 10.1023/A:1008934912555

Transgenic animal bioreactors

Louis Marie Houdebine 1
PMCID: PMC7089244  PMID: 11131009

Abstract

The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes involved in protein maturation has been envisaged and successfully performed in one case. Furin gene expressed specifically in the mammary gland proved to able to cleave native human protein C with good efficiency. In a certain number of cases, the recombinant proteins produced in milk have deleterious effects on the mammary gland function or in the animals themselves. This comes independently from ectopic expression of the transgenes and from the transfer of the recombinant proteins from milk to blood. One possibility to eliminate or reduce these side-effects may be to use systems inducible by an exogenous molecule such as tetracycline allowing the transgene to be expressed only during lactation and strictly in the mammary gland. The purification of recombinant proteins from milk is generally not particularly difficult. This may not be the case, however, when the endogenous proteins such as serum albumin or antibodies are abundantly present in milk. This problem may be still more crucial if proteins are produced in blood. Among the biological contaminants potentially present in the recombinant proteins prepared from transgenic animals, prions are certainly those raising the major concern. The selection of animals chosen to generate transgenics on one hand and the elimination of the potentially contaminated animals, thanks to recently defined quite sensitive tests may reduce the risk to an extremely low level. The available techniques to produce pharmaceutical proteins in milk can be used as well to optimize milk composition of farm animals, to add nutriceuticals in milk and potentially to reduce or even eliminate some mammary infectious diseases.

Keywords: Recombinant proteins, transgenic animals, milk

References

  1. Adachi Y, Käs E, Laemmli UK. Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. EMBO J. 1989;8:3997–4006. doi: 10.1002/j.1460-2075.1989.tb08582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aigner B, Fleischmann M, Muller M, Brem G. Stable long term germ-line transmission of transgene integration sites in mice. Transgenic Res. 1999;8:1–8. doi: 10.1023/a:1008824028100. [DOI] [PubMed] [Google Scholar]
  3. Alton E, Griesenbach U, Geddes DM. Milking gene therapy. Nature Sci. 1998;4:1121–1122. doi: 10.1038/2616. [DOI] [PubMed] [Google Scholar]
  4. Archer JS, Kennan WS, Gould MN, Bremel RD. Human growth hormone (hGH) secretion in milk of goats after direct transfer of the hGH gene into the mammary gland by using replication-defective retrovirus vectors. Proc Natl Acad Sci USA. 1994;91:6840–6844. doi: 10.1073/pnas.91.15.6840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashe HJ, Monks J, Wijgerde M, Fraser P, Proudfoot NJ. Intergenic transcription and transinduction of the human b-globin locus. Genes Dev. 1997;11:2494–2509. doi: 10.1101/gad.11.19.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Attal J, Stinnakre MG, Théron MC, Terqui M, Houdebine LM. The use of episomal vectors for transgenesis. In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 251–255. [Google Scholar]
  7. Ayares D (1999) Gene targeting in livestock. Transgenic Research Conference, Tahoe City Aout 1999, 20.
  8. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, et al. Production of goats by somatic cell nuclear transfer. Nature Biotech. 1999;17:456–461. doi: 10.1038/8632. [DOI] [PubMed] [Google Scholar]
  9. Barash I, Faerman A, Richenstein M, Kari R, Damary G, Shani M, Bissell MJ. In vivo and in vitro expression of human serum albumin genomic sequences in mammary epithelial cells with b-lactoglobulin and whey acidic protein promoters. Mol Repro Dev. 1999;52:241–252. doi: 10.1002/(SICI)1098-2795(199903)52:3<241::AID-MRD1>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  10. Bell AC, Felsenfeld G. Stopped at the border: boundaries and insulators. Cur Opin Gene Dev. 1999;9:191–198. doi: 10.1016/S0959-437X(99)80029-X. [DOI] [PubMed] [Google Scholar]
  11. Berdoz J, Tallichet B., Reinhardt M, Kraehenbuhl JP. In vitro comparison of the antigen-binding and stability properties of the various molecular forms of IgA antibodies assembled and produced in CHO cells. Proc Natl Acad Sci USA. 1999;96:3029–3034. doi: 10.1073/pnas.96.6.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bishoff R, Degryse E, Perraud F, Dalemans W, Ali-Hadji D, Thépot D, et al. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Lett. 1992;305:265–268. doi: 10.1016/0014-5793(92)80683-8. [DOI] [PubMed] [Google Scholar]
  13. Blau HM, Rossi F. Tet B or not tet B: advances in tetracycline-inducible gene expression. Proc Natl Acad Sci USA. 1999;96:797–799. doi: 10.1073/pnas.96.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bleck GT, Bremel RD. Variation in expression of a bovine alpha-lactalbumin transgene in milk of transgenic mice. J Dairy Sci. 1994;77:1897–1904. doi: 10.3168/jds.S0022-0302(94)77132-0. [DOI] [PubMed] [Google Scholar]
  15. Bleck GT, White BR, Miller DJ, Wheeler MB. Production of bovine α-lactalbumin in the milk of transgenic pigs. J Anim Sci. 1998;76:3072–3078. doi: 10.2527/1998.76123072x. [DOI] [PubMed] [Google Scholar]
  16. Bosher JM, Labouesse M. RNA interference: genetic wand and genetic watchdog. Nature Cell Biol. 2000;2:E31–E36. doi: 10.1038/35000102. [DOI] [PubMed] [Google Scholar]
  17. Bonifer C. Long-distance chromatin mechanisms controlling tissue-specific gene locus activation. Gene. 1999;238:277–289. doi: 10.1016/s0378-1119(99)00340-6. [DOI] [PubMed] [Google Scholar]
  18. Castilla J, Pintado B, Sola I, Sanchez-Morgado JM, Enjuanes L. Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nature Biotech. 1998;16:349–354. doi: 10.1038/nbt0498-349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cerdan MG, Young JI, Zino E, Falzone TL, Otero V, Torres HN, Rubinstein M. Accurate spatial and temporal transgene expression driven by a 3.8-kilobase promoter of the bovine β-casein gene in the lactating mouse mammary gland. Mol Reprod Dev. 1998;49:236–245. doi: 10.1002/(SICI)1098-2795(199803)49:3<236::AID-MRD3>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  20. Chan AWS, Homan EJ, Ballou LU, Burns JC, Bremel RD. Transgenic cattle produce reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci USA. 1998;95:14028–14033. doi: 10.1073/pnas.95.24.14028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chanat E, Martin P, Ollivier-Bousquet M. αS1-casein is required for the efficient transport of β-and κ-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J Cell Sci. 1999;112:3399–3412. doi: 10.1242/jcs.112.19.3399. [DOI] [PubMed] [Google Scholar]
  22. Clark AJ. The mammary gland as a bioreactor: expression, processing and production of recombinant proteins. J Mamm Gland Biol Neop. 1998;3:337–349. doi: 10.1023/a:1018723712996. [DOI] [PubMed] [Google Scholar]
  23. Cohen-Tannoudji M, Babinet C. Beyond ‘knock-out’ mice: new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod. 1998;4:929–938. doi: 10.1093/molehr/4.10.929. [DOI] [PubMed] [Google Scholar]
  24. Colman A. Production of proteins in the milk of transgenic livestock: problems, solutions, and successes. Am J Clin Nutr. 1996;63:639S–645S. doi: 10.1093/ajcn/63.4.639. [DOI] [PubMed] [Google Scholar]
  25. Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M, et al. Human nerve growth factor beta (hNGF-β): mammary gland specific expression and production in transgenic rabbits. FEBS Lett. 1999;444:111–116. doi: 10.1016/s0014-5793(98)01728-1. [DOI] [PubMed] [Google Scholar]
  26. Dale TC, Krnacik MJ, Schmidhauser C, Yang CLQ, Bissell MJ, Rosen JM. High level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3′ untranslated region. Mol Cell Biol. 1992;12:905–914. doi: 10.1128/mcb.12.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. De Groot N, Van Kuik-Romeijn P, Lee SH, De Boer H. Over-expression of the murine polymeric immunoglobulin receptor gene in the mammary gland of transgenic mice. Transgenic Res. 1999;8:125–135. doi: 10.1023/a:1008981312682. [DOI] [PubMed] [Google Scholar]
  28. Devinoy E, Thépot D, Stinnakre MG, Fontaine ML, Grabowski H, Puissant C, et al. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res. 1994;3:79–89. doi: 10.1007/BF01974085. [DOI] [PubMed] [Google Scholar]
  29. Di Tullio P, Cheng SH, Marshall J, Gregory RJ, Ebert KM, Maede HM, Smith AE. Production of cystic fibrosis transmenbrane conductance regulator in the milk of transgenic mice. Bio/Tech. 1992;10:74–77. doi: 10.1038/nbt0192-74. [DOI] [PubMed] [Google Scholar]
  30. Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, et al. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci USA. 1996;93:6659–6664. doi: 10.1073/pnas.93.13.6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Dorsett D. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr Opin Gene Dev. 1999;9:505–514. doi: 10.1016/s0959-437x(99)00002-7. [DOI] [PubMed] [Google Scholar]
  32. Dorer DR. Do transgene arrays form heterochromatin in vertebrates? Transgenic Res. 1997;6:3–10. doi: 10.1023/a:1018460413680. [DOI] [PubMed] [Google Scholar]
  33. Draghia-Akli R, Fiorotto ML, Hill LA, Malone PB, Deaver DR, Schwartz RJ. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs. Nature Biotech. 1999;17:1179–1183. doi: 10.1038/70718. [DOI] [PubMed] [Google Scholar]
  34. Drews R, Paleyanda RK, Lee TK, Chang RR, Rehemtulla A, Kaufman RJ, et al. Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc Natl Acad Sci USA. 1995;92:10462–10466. doi: 10.1073/pnas.92.23.10462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Dyck MK, Gagné D, Ouellet M, Sénéchal J, Bélanger E, Lacroix D, et al. Seminal vesicle production and secretion of growth hormone into seminal fluid. Nature Biotech. 1999;17:1087–1090. doi: 10.1038/15067. [DOI] [PubMed] [Google Scholar]
  36. Echelard Y. Genetic mosaicism in the generation of transgenic mice. In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 233–235. [Google Scholar]
  37. Echelard Y (1998) Increasing efficiency of transgenesis. Genetically engineering and cloning animals: Deer Valley Utah USA.
  38. Etches RJ, Clark ME, Verrinder Gibbins AM, Cochran MB. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. Production of chimeric chickens as intermediates for gene transfer; pp. 75–82. [Google Scholar]
  39. Etches R (1999) Avian embryonic stem cells and their application in the pharmaceutical and poultry industries. Transgenic Animal Research Conference Tahoe City USA 13.
  40. Eyestone WH. Production and breeding of transgenic cattle using in vitro embryo production technology. Theriogeriology. 1998;51:509–517. doi: 10.1016/S0093-691X(98)00244-1. [DOI] [PubMed] [Google Scholar]
  41. Fischer R, Schumann D, Zimmermann S, Drossard J, Sack M, Schillberg S. Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur J Biochem. 1999;262:810–816. doi: 10.1046/j.1432-1327.1999.00435.x. [DOI] [PubMed] [Google Scholar]
  42. Fire A. RNA-triggered gene silencing. Trends Genet. 1999;15:358–363. doi: 10.1016/s0168-9525(99)01818-1. [DOI] [PubMed] [Google Scholar]
  43. Fléchon JE. What are ES cells? In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 157–166. [Google Scholar]
  44. Forrester WC, Fernandez LA, Grosschedl R. Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer promoter interactions. Gene Dev. 1999;13:3003–3014. doi: 10.1101/gad.13.22.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Forster K, Helbl V, Lederer T, Urlinger S, Wittenburg N, Hillen W. Tetracycline-inducible expression systems with reduced basal activity in mammalian cells. Nucleic Acids Res. 1999;27:708–710. doi: 10.1093/nar/27.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Fox TD. Natural variation in the genetic code. Ann Rev Genet. 1987;21:67–91. doi: 10.1146/annurev.ge.21.120187.000435. [DOI] [PubMed] [Google Scholar]
  47. Fujiwara Y, Takahashi R, Miwa M, Kameda M, Kodaira K, Hirabayashi M, et al. Analysis of control elements for position independent expression of human α-lactalbumin YAC. Mol Reprod Dev. 1999;54:17–23. doi: 10.1002/(SICI)1098-2795(199909)54:1<17::AID-MRD3>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  48. Fujiwara Y, Miwa M, Takahashi R, Kodaira K, Hirabayashi M, Suzuki T, Ueda M. High-level expressing YAC vector for transgenic animal bioreactors. Mol Reprod Dev. 1999;52:414–420. doi: 10.1002/(SICI)1098-2795(199904)52:4<414::AID-MRD10>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  49. Fussenegger M, Bailey JE, Hauser H, Mueller PP. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotech. 1999;17:35–42. doi: 10.1016/s0167-7799(98)01248-7. [DOI] [PubMed] [Google Scholar]
  50. Garrick D, Fiering S, Martin DIK, Whitelaw E. Repeat-induced gene silencing in mammals. Nature Gen. 1998;18:56–59. doi: 10.1038/ng0198-56. [DOI] [PubMed] [Google Scholar]
  51. Gordon K, Lee E, Vitale JA, Smith AE, Westphal H, Hennighausen L. Production of human tissue plasminogen activator in transgenic mouse milk. Bio/Technol. 1987;5:1183–1187. [PubMed] [Google Scholar]
  52. Grabowski H, Le Bars D, Chene N, Attal J, Malienou-Ngassa R, Puissant C, Houdebine LM. Rabbit whey acidic protein concentration in milk, serum, mammary gland extract, and culture medium. J Dairy Sci. 1991;74:4143–4150. doi: 10.3168/jds.S0022-0302(91)78609-8. [DOI] [PubMed] [Google Scholar]
  53. Günzburg WH, Salmons B, Zimmermann B, Müller M, Erfle V, Brem G. A mammary specific promoter directs expression of growth hormone not only to the mammary gland, but also to Bergman Glia cells in transgenic mice. Mol Endocri. 1991;5:123–133. doi: 10.1210/mend-5-1-123. [DOI] [PubMed] [Google Scholar]
  54. Harris B. Exploiting antibody-based technologies to manage environmental pollution. Trends Biotech. 1999;17:290–296. doi: 10.1016/s0167-7799(99)01308-6. [DOI] [PubMed] [Google Scholar]
  55. Hirabayashi M, Kodaira K, Takahashi R, Sagara J, Suzuki T, Ueda M. Transgene expression in mammary glands of newborn rats. Mol Reprod Dev. 1996;43:145–149. doi: 10.1002/(SICI)1098-2795(199602)43:2<145::AID-MRD2>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  56. Horowitz DS, Krainer AR. Mechanisms for selecting 5′ splice sites in mammalian pre-mRNA splicing. Trends Genet. 1994;10:100–106. doi: 10.1016/0168-9525(94)90233-x. [DOI] [PubMed] [Google Scholar]
  57. Houdebine LM. Production of pharmaceutical proteins from transgenic animals. J Biotech. 1994;34:269–287. doi: 10.1016/0168-1656(94)90062-0. [DOI] [PubMed] [Google Scholar]
  58. Houdebine LM (1998) The preparation of recombinant superoxide dismutases from the milk of transgenic animals. Mel Paris (ed.) Superoxide Dismutase: Recent advances and clinical applications (pp. 239–242).
  59. Houdebine LM, Attal J. Internal ribosome entry sites (IRESs): reality and use. Transgenic Res. 1999;8:157–177. doi: 10.1023/a:1008909908180. [DOI] [PubMed] [Google Scholar]
  60. Huang Y, Carmichael GG. The mouse histone H2a gene contains a small element that facilitates cytoplasmic accumulation of intronless gene transcripts and of unspliced HIV-1-related mRNAs. Proc Natl Acad Sci USA. 1997;94:10104–10109. doi: 10.1073/pnas.94.19.10104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hyttinen JM, Peura T, Tolvanen M, Aalto J, Alhonen L, Sinervirta R, et al. Generation of transgenic dairy cattle from transgene analyzed and sexed embryos produced in vitro. Bio/Technol. 1994;12:606–608. doi: 10.1038/nbt0694-606. [DOI] [PubMed] [Google Scholar]
  62. Ilan N, Barash I, Faerman A, Shani M. Dual regulation of β-lactoglobulin/human serum albumin gene expression by the extracellular matrix in mammary cells from transgenic mice. Exp Cell Res. 1996;224:28–38. doi: 10.1006/excr.1996.0108. [DOI] [PubMed] [Google Scholar]
  63. Ilan N, Barash I, Raikhinstein M, Faerman A, Shani M. β-lactoglobulin/human serum albumin fusion genes do not respond accurately to signals from the extracellular matrix in mammary epithelial cells from transgenic mice. Exp Cell Res. 1996;228:146–159. doi: 10.1006/excr.1996.0310. [DOI] [PubMed] [Google Scholar]
  64. Ivarie R (1999) Validating the Hen as a bioreactor for the production of exogenous proteins in egg whites. Transgenic Animal Research Conference Tahoe City USA, 22. [DOI] [PubMed]
  65. John DCA, Watson R, Kind AJ, Scott AR, Kadler KE, Bulleid NJ. Expression of an engineered form of recombinant procollagen in mouse milk. Nature Biotech. 1999;17:385–389. doi: 10.1038/7945. [DOI] [PubMed] [Google Scholar]
  66. Karatzas C, Zhou JF, Huang Y, Duguay F, Chretien N, Bhatia B, et al., (1999) Production of recombinant spider silk (biosteelTM) in the milk of transgenic animals. Transgenic Animal Research Conference Tahoe City USA, 34.
  67. Kerr DE, Furth PA, Powell AM, Wall RJ. Expression of genegun injected plasmid DNA in the ovine mammary gland and in lymph nodes draining the injection site. Animal Biotech. 1996;7:33–45. [Google Scholar]
  68. Kerr DE, Liang F, Bondioli KR, Zhao H, Kreibich G, Wall RJ, Sun T. The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nature Biotech. 1998;16:75–79. doi: 10.1038/nbt0198-75. [DOI] [PubMed] [Google Scholar]
  69. Kolb AF, Ansell R, McWhir J, Siddell SG. Insertion of a foreign gene into the β-casein locus by Cre-mediated site-specific recombination. Gene. 1999;227:21–31. doi: 10.1016/s0378-1119(98)00607-6. [DOI] [PubMed] [Google Scholar]
  70. Krimpenfort P, Rademakers A, Eyestone W, Van Der Schans A, Van Den Broek S, Kooiman P, et al. Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Bio/Technol. 1991;9:844–847. doi: 10.1038/nbt0991-844. [DOI] [PubMed] [Google Scholar]
  71. Kunita R, Samarut J and Pain B (1998) Establishment of the chicken gene-targeting disruption system. French Japonese Workshop. Genes and early development, June 4–5.
  72. Latham PW. Therapeutic peptides revisited nature. Nature Biotech. 1999;17:755–757. doi: 10.1038/11686. [DOI] [PubMed] [Google Scholar]
  73. Lee WK, Kim SJ, Hong S, Lee T, Han Y, Yoo OJ, Im KS, Lee K. Expression of a bovine β-casein/human lysozyme fusion gene in the mammary gland of transgenic mice. J Biochem Mol Biol. 1998;31:413–417. [Google Scholar]
  74. Li X, Eastman EM, Schwartz RJ, Draghia-Akli R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nature Biotech. 1999;17:241–245. doi: 10.1038/6981. [DOI] [PubMed] [Google Scholar]
  75. Limonta J, Pedraza A, Rodriguez A, Freyre FM, Barral AM, Castro FO, et al. Production of active anti-CD6 mouse/human chimeric antibodies in the milk of transgenic mice. Immunotech. 1995;1:107–113. doi: 10.1016/1380-2933(95)00010-0. [DOI] [PubMed] [Google Scholar]
  76. Litscher ES, Liu C, Echelard Y, Wassarman PM. Zona pellucida glycoprotein mZP3 produced in milk of transgenic mice is active as a sperm receptor, but can be lethal to newborns. Transgenic Res. 1999;8:361–369. doi: 10.1023/a:1008996612032. [DOI] [PubMed] [Google Scholar]
  77. Lo D, Pursel V, Linton PJ, Sandgren E, Behringer R, Rexroad C, et al. Expression of mouse IgA by transgenic mice, pigs and sheep. Eur J Immunol. 1991;21:1001–1006. doi: 10.1002/eji.1830210421. [DOI] [PubMed] [Google Scholar]
  78. Massoud M, Bischoff R, Dalemans W, Pointu H, Attal J, Schultz H, et al. Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits. J Biotech. 1991;18:193–204. doi: 10.1016/0168-1656(91)90247-s. [DOI] [PubMed] [Google Scholar]
  79. Massoud M, Attal J, Thépot D, Pointu H, Stinnakre MG, Theron MC, et al. The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Dev. 1996;36:555–563. doi: 10.1051/rnd:19960511. [DOI] [PubMed] [Google Scholar]
  80. McClenaghan M, Springbett A, Wallace RM, Wilde CJ, Clark J. Secretory proteins compete for production in the mammary gland of transgenic mice. Biochem J. 1995;310:637–641. doi: 10.1042/bj3100637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. McLaren A. Establishment of the germ cell lineage in mammals. J Cell Physiol. 2000;182:141–143. doi: 10.1002/(SICI)1097-4652(200002)182:2<141::AID-JCP1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  82. Meade H (1999) Taking ATIII from goats through clinical trials. Transgenic Animal Research Conference Tahoe City USA 33.
  83. Mendez MJ, Green LL, Corvalan JRF, Jia X, Maynard-Currie CE, Yang X, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nature Genet. 1997;15:146–156. doi: 10.1038/ng0297-146. [DOI] [PubMed] [Google Scholar]
  84. Mercier JC, Vilotte JL. The modification of milk protein composition through transgenesis: progress and problems. In: Houdebine LM, editor. Transgenic Animals Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 473–482. [Google Scholar]
  85. Mueller S, Prelle K, Rieger N, Petznek H, Lassnig C, Luksch U, Aigner B, Baetscher M, Wolf E, Mueller M, Brem G. Mol Reprod Dev. 1999;54:244–225. doi: 10.1002/(SICI)1098-2795(199911)54:3<244::AID-MRD5>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  86. Nagaraju J, Kanda T, Yukuhiro K, Chavancy G, Tamura T, Couble P. Attempt at transgenesis of the silkworm (Bombyx mori L.) by egg-injection of foreign DNA. Appl Entomol Zool. 1996;31:458–596. [Google Scholar]
  87. Naito M. The microinjection of DNA into early chicken embryo. In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 69–73. [Google Scholar]
  88. Niemann H, Halter R, Espanion G, Wrenzycki C, Herrmann D, Lemme E, et al. Expression of human blood clotting factor VIII (FVIII) constructs in the mammary gland of transgenic mice and sheep. J Anim Breed Genet. 1996;113:437–444. [Google Scholar]
  89. Ninomiya T, Hirabayashi M, Sagara J, Yuki A. Functions of milk protein gene 5′ flanking regions on human growth hormone gene. Mol Reprod Dev. 1994;37:276–283. doi: 10.1002/mrd.1080370306. [DOI] [PubMed] [Google Scholar]
  90. Oh KB, Choi H, Kang Y, Choi WS, Kim MO, Lee KS, Lee KK, Lee CS. A hybrid bovine β-casein/bGH gene directs transgene expression to the lung and mammary gland of transgenic mice. Transgenic Res. 1999;8:307–311. doi: 10.1023/a:1008978129000. [DOI] [PubMed] [Google Scholar]
  91. Page RL, Canseco RS, Russell CG, Johnson JL, Velander WH, Gwazdauskas FC. Transgene detection during early murine embryonic development after pronuclear microinjection. Transgenic Res. 1995;4:12–17. doi: 10.1007/BF01976496. [DOI] [PubMed] [Google Scholar]
  92. Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW, et al. Transgenic pigs produce functional human factor VIII in milk. Nature Biotech. 1997;15:971–975. doi: 10.1038/nbt1097-971. [DOI] [PubMed] [Google Scholar]
  93. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982;300:611–615. doi: 10.1038/300611a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA. 1991;88:478–482. doi: 10.1073/pnas.88.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Perry ACF, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–1183. doi: 10.1126/science.284.5417.1180. [DOI] [PubMed] [Google Scholar]
  96. Petitclerc D, Attal J, Théron MC, Bearzotti M, Bolifraud P, Kann G, et al. The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. J Biotechnol. 1995;40:169–178. doi: 10.1016/0168-1656(95)00047-t. [DOI] [PubMed] [Google Scholar]
  97. Pinkaart MJ, Recillas-Targa F, Felsenfeld G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 1998;12:2852–2862. doi: 10.1101/gad.12.18.2852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, et al. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 1994;3:99–108. doi: 10.1007/BF01974087. [DOI] [PubMed] [Google Scholar]
  99. Prieto PA, Mukerji P, Kelder B, Erney R, Gonzalez D, Yun JS, et al. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J Biol Chem. 1995;270:29515–29519. doi: 10.1074/jbc.270.49.29515. [DOI] [PubMed] [Google Scholar]
  100. Prunkard D, Cottingham I, Garner I, Bruce S, Dalrymple M, Lasser G, et al. High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nature Biotech. 1996;14:867–871. doi: 10.1038/nbt0796-867. [DOI] [PubMed] [Google Scholar]
  101. Qureschi SA, Kim RM, Konteatis Z, Biazzo DE, Motamedi H, Rodrigues R, et al. Mimicry of erythoropoietin by a nonpeptide molecule. Proc Natl Acad Sci USA. 1999;96:12156–12161. doi: 10.1073/pnas.96.21.12156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Recillas-Targa F, Bell AC, Felsenfeld G. Positional enhancer-blocking activity of the chicken b-globin insulator in transiently transfected cells. Proc Natl Acad Sci USA. 1999;96:14354–14359. doi: 10.1073/pnas.96.25.14354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Reddy VB, Vitale JA, Wei C, Montoya-Zavala M, Stice SL, Balise J, Robl JM. Expression of human growth hormone in the milk of transgenic mice. Animal Biotech. 1991;2:15–29. [Google Scholar]
  104. Rijnkels M, Miller W and Rosen JM (1999) Casein Gene locus control regions? Genet Anal Bio-mol Eng (in press).
  105. Robl JM. New life for sperm-mediated transgenesis? Nature Biotech. 1999;17:636–637. doi: 10.1038/10846. [DOI] [PubMed] [Google Scholar]
  106. Rokkones E, Fromm SH, Kareem BN, Klungland H, Olstad OK, Hogset A, et al. Human parathyroid hormone as a secretory peptide in milk of transgenic mice. J Cell Biochem. 1995;59:168–176. doi: 10.1002/jcb.240590206. [DOI] [PubMed] [Google Scholar]
  107. Ronfort C, Legras C, Verdier G. The use of retroviral vectors for gene transfer into bird embryo. In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 83–94. [Google Scholar]
  108. Rosen JM, Li S, Raught B, Hadsell D. The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Am J Clin Nutr. 1996;63:627S–632S. doi: 10.1093/ajcn/63.4.627. [DOI] [PubMed] [Google Scholar]
  109. Rucker EB, Piedrahita JA. Cre-mediated recombination at the murine whey acidic protein (mWAP) locus. Mol Reprod Dev. 1997;48:324–331. doi: 10.1002/(SICI)1098-2795(199711)48:3<324::AID-MRD4>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  110. Rudolph NS. Biopharmaceutical production in transgenic livestock. Trends Biotech. 1999;17:367–374. doi: 10.1016/s0167-7799(99)01341-4. [DOI] [PubMed] [Google Scholar]
  111. Saif LJ, Wheeler MB. WAPping gastroenteritis with transgenic antibodies. Nature Biotech. 1998;16:334–335. doi: 10.1038/nbt0498-334. [DOI] [PubMed] [Google Scholar]
  112. Santoso B, Ortiz BD, Winoto A. Control of organ-specific demethylation by an element of the T-cell receptor-locus control region. J Biol Chem. 2000;275:1952–1958. doi: 10.1074/jbc.275.3.1952. [DOI] [PubMed] [Google Scholar]
  113. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278:2131–2133. doi: 10.1126/science.278.5346.2130. [DOI] [PubMed] [Google Scholar]
  114. Shamay A, Pursel VG, Wilkinson E, Wall RJ, Hennighausen L. Expression of the whey acidic protein in transgenic pigs impairs mammary development. Transgenic Res. 1992;1:124–132. doi: 10.1007/BF02528777. [DOI] [PubMed] [Google Scholar]
  115. Sharma A, Martin MJ, Okabe JF, Truglio RA, Dhanjal NK, Logan JS, Kumar R. An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine. Bio/Technol. 1994;12:55–59. doi: 10.1038/nbt0194-55. [DOI] [PubMed] [Google Scholar]
  116. Sherman A, Dawson A, Mather C, Gihooley H, Mitchell R, Finnegan D, Sang H. Transposition of the drosophila element mariner into the chicken germ line. Nature Biotech. 1998;16:1050–1053. doi: 10.1038/3497. [DOI] [PubMed] [Google Scholar]
  117. Simons JP, McClenaghan M, Clark AJ. Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature. 1987;328:530–532. doi: 10.1038/328530a0. [DOI] [PubMed] [Google Scholar]
  118. Sippel AE, Saueressig H, Huber MC, Faust N, Bonifer C. Insulation of transgenes from chromosomal position effects. In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 257–265. [Google Scholar]
  119. Sohn BH, Kim SJ, Park H, Park SK, Lee SC, Hong HJ, et al. Expression and characterization of bioactive human thrombopoietin in the milk of transgenic mice. DNA Cell Biol. 1999;18:845–852. doi: 10.1089/104454999314845. [DOI] [PubMed] [Google Scholar]
  120. Sola I, Castilla J, Pintado B, Sanchez-Morgado JM, Whitelaw CBA, Clark AJ, Enjuanes L. Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J Virol. 1998;72:3762–3772. doi: 10.1128/jvi.72.5.3762-3772.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Somia NV, Kafri T, Verma IM. Piecing together more efficient gene expression. Nature Biotech. 1999;17:224–245. doi: 10.1038/6962. [DOI] [PubMed] [Google Scholar]
  122. Soulier S, Stinnakre MG, Lepourry L, Mercier JC, Vilotte JL. Use of doxycycline-controlled gene expression to reversibly alter milk-protein composition in transgenic mice. Eur J Biochem. 1999;260:533–539. doi: 10.1046/j.1432-1327.1999.00200.x. [DOI] [PubMed] [Google Scholar]
  123. Stinnakre MG, Devinoy E, Thépot D, Chêne N, Bayat-Samardi M, Grabowski H, Houdebine LM. Quantitative collection of milk and active recombinant proteins from the mammary glands of transgenic mice. Anim Biotech. 1992;3:245–255. [Google Scholar]
  124. Stinnakre MG, Soulier S, Schibler L, Lepourry L, Mercier JC, Vilotte JL. Position-independent and copy number related expression of a goat bacterial artificial chromosome α-lactalbumin gene in transgenic mice. Biochem J. 1999;339:33–36. [PMC free article] [PubMed] [Google Scholar]
  125. Strömqvist M, Törnell J, Edlund M, Edlund A, Johansson T, Lindgren K, et al. Recombinant human bile salt-stimulated lipase: an example of defective O-glycosylation of a protein produced in milk of transgenic mice. Transgenic Res. 1996;5:475–485. doi: 10.1007/BF01980213. [DOI] [PubMed] [Google Scholar]
  126. Strömqvist M, Houdebine LM, Andersson J, Edlund A, Johansson T, Viglietta C, et al. Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res. 1997;6:271–278. doi: 10.1023/a:1018406611380. [DOI] [PubMed] [Google Scholar]
  127. Taboit-Dameron F, Malassagne B, Viglietta C, Puissant C, Leroux-Coyau M, Chereau C, et al. Association of the 5′HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expresssion of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res. 1999;8:223–235. doi: 10.1023/a:1008919925303. [DOI] [PubMed] [Google Scholar]
  128. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotech. 1999;18:81–84. doi: 10.1038/71978. [DOI] [PubMed] [Google Scholar]
  129. Thépot D, Devinoy E, Fontaine ML, Stinnakre MG, Massoud M, Kann G, Houdebine LM. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Mol Reprod Dev. 1995;42:261–267. doi: 10.1002/mrd.1080420302. [DOI] [PubMed] [Google Scholar]
  130. Tojo H, Tanaka S, Matsuzawa A, Takahashi M, Tachi C. Production and characterization of transgenic mice expressing a hGH fusion gene driven by the promoter of mouse whey acidic protein (mWAP) putatively specific to mammary gland. J Reprod Dev. 1993;39:145–155. [Google Scholar]
  131. Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nature Genetics. 1997;16:133–143. doi: 10.1038/ng0697-133. [DOI] [PubMed] [Google Scholar]
  132. Travers A. Chromatin modification by DNA tracking. Proc Natl Acad Sci. 1999;96:13634–13637. doi: 10.1073/pnas.96.24.13634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Van Cott KE, Williams B, Velander WH, Gwazdauskas F, Lee T, Lubon H, Drohan WN. Affinity purification of biologically active and inactive forms of recombinant human protein C produced in porcine mammary gland. J Mol Recognit. 1996;9:407–414. doi: 10.1002/(sici)1099-1352(199634/12)9:5/6<407::aid-jmr277>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  134. Verrinder-Gibbins AM. The chicken, the egg, and the ancient mariner. Nature Biotech. 1998;16:1013–1014. doi: 10.1038/3458. [DOI] [PubMed] [Google Scholar]
  135. Vos JH. Mammalian artificial chromosomes as tools for gene therapy. Curr Opin Genet Dev. 1998;8:351–359. doi: 10.1016/s0959-437x(98)80093-2. [DOI] [PubMed] [Google Scholar]
  136. Wagner K, Wall RJ, St Onge L, Gruss P, Wynshaw-Boris A, Garrett L, et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 1997;25:4323–4330. doi: 10.1093/nar/25.21.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Wall RJ. Biotechnology for the production of modified and innovative animal products: transgenic livestock bioreactors. Lives Prod Sci. 1999;59:243–255. [Google Scholar]
  138. Walters MC, Magis W, Fiering S, Eidemiller, Scalzo D, Groudine M, Martin DIK. Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 1996;10:185–195. doi: 10.1101/gad.10.2.185. [DOI] [PubMed] [Google Scholar]
  139. Wang Y, DeMayo FJ, Tsai SY, O'Malley BW. Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotech. 1996;15:239–243. doi: 10.1038/nbt0397-239. [DOI] [PubMed] [Google Scholar]
  140. Weidle UH, Lenz H, Brem G. Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits and pigs. Gene. 1991;98:185–191. doi: 10.1016/0378-1119(91)90172-8. [DOI] [PubMed] [Google Scholar]
  141. Wen J, Kawamata Y, Tojo H, Tanaka S, Tachi C. Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. Mol Reprod Dev. 1995;41:399–406. doi: 10.1002/mrd.1080410402. [DOI] [PubMed] [Google Scholar]
  142. Wheeler M (1999) Transgenic alteration of sow milk: production and characterization bovine a-lactalbumin and IGF-I transgenic swine. Transgenic Animal Research Conference Tahoe City USA, 28–29.
  143. Whitelaw B, Harris S, McClenaghan M, Simons JP. Position-independent expression of the ovine b-lactoglobulin gene in transgenic mice. Biochem J. 1992;286:31–39. doi: 10.1042/bj2860031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Whitelaw B. Toward designer milk. Nature Biotech. 1999;17:135–136. doi: 10.1038/6134. [DOI] [PubMed] [Google Scholar]
  145. Willard FH. Human artificial chromosomes coming into focus. Nature Biotech. 1998;16:415–416. doi: 10.1038/nbt0598-415. [DOI] [PubMed] [Google Scholar]
  146. Wright G, Colman A. Purification of recombinant proteins from sheep's milk. In: Houdebine LM, editor. Transgenic Animals: Generation and Use. Amsterdam: Harwood Academic Publishers; 1997. pp. 469–471. [Google Scholar]
  147. Wright A, Morrison SL. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotech. 1997;15:26–32. doi: 10.1016/S0167-7799(96)10062-7. [DOI] [PubMed] [Google Scholar]
  148. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, et al. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio/Techno. 1991;9:830–834. doi: 10.1038/nbt0991-830. [DOI] [PubMed] [Google Scholar]
  149. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science. 1996;273:458–464. doi: 10.1126/science.273.5274.458. [DOI] [PubMed] [Google Scholar]
  150. Yamao M, Katayama N, Nakazawa H, Yamakaws M, Hayashi Y, Hara S, et al. Gene targeting in the silkworm by use of a baculovirus. Genes Dev. 1999;13:511–516. doi: 10.1101/gad.13.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Yarus S, Rosen JM, Cole AM, Diamond G. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc Natl Acad Sci USA. 1996;93:14118–14121. doi: 10.1073/pnas.93.24.14118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Yull F, Binas B, Harold G, Wallace R, Clark AJ. Transgene rescue in the mammary gland is associated with transcription but does not require translation of BLG transgenes. Transgenic Res. 1997;6:11–17. doi: 10.1023/a:1018444830518. [DOI] [PubMed] [Google Scholar]
  153. Zinovieva N, Lassnig C, Schams D, Besenfelder U, Wolf E, Müller S, et al. Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi-and homozygous transgenic rabbits over several generations. Transgenic Res. 1998;7:437–447. doi: 10.1023/a:1008831028620. [DOI] [PubMed] [Google Scholar]
  154. Zuelke KA. Transgenic modification of cows milk for valueadded processing. Reprod Fertil Dev. 1998;10:671–676. doi: 10.1071/rd98068. [DOI] [PubMed] [Google Scholar]

Articles from Transgenic Research are provided here courtesy of Nature Publishing Group

RESOURCES