Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1993;22(4):697–701. doi: 10.1007/BF00047410

Inhibitory effects of human cystatin C on plum pox potyvirus proteases

Juan Antonio García 1, María Teresa Cervera 1, José Luis Riechmann 1, Carlos López-Otín 2
PMCID: PMC7089253  PMID: 8343605

Abstract

The effect of different protease inhibitors on the proteolytic processing of the plum pox potyvirus (PPV) polyprotein has been analyzed. Human cystatin C, an inhibitor of cysteine proteases, interfered with the outoprocessing of the viral papain-like cysteine protease HCPro. Unexpectedly, it also had an inhibitory effect on the autocatalytic cleavage of the Nla protease which, although it has a Cys residue in its active center, has been described as structurally related to serine proteases. Other protease inhibitors tested had no effect on any of the cleavage events analyzed.

Key words: plum pox potyvirus, protease, human cystatin C, inhibition

References

  • 1.Abrahamson M, Dalbøge H, Olafsson I, Carlsen S, Grubb A. Efficient production of native, biologically active human cystatin C by Escherichia coli. FEBS Lett. 1988;236:14–18. doi: 10.1016/0014-5793(88)80276-x. [DOI] [PubMed] [Google Scholar]
  • 2.Bazan JF, Fletterick RJ. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: Structural and functional implications. Proc Natl Acad Sci USA. 1988;85:7872–7876. doi: 10.1073/pnas.85.21.7872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Björck L, Grubb A, Kjellén L. Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J Virol. 1990;64:941–943. doi: 10.1128/jvi.64.2.941-943.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Carrington JC, Cary SM, Dougherty WG. Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activities of polyproteins containing the 49-kilodalton proteinase. J Virol. 1988;62:2313–2320. doi: 10.1128/jvi.62.7.2313-2320.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Carrington JC, Cary SM, Parks TD, Dougherty WG. A second proteinase encoded by a plant potyvirus genome. EMBO J. 1989;8:365–370. doi: 10.1002/j.1460-2075.1989.tb03386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Carrington JC, Dougherty WG. Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology. 1987;160:355–362. doi: 10.1016/0042-6822(87)90006-7. [DOI] [PubMed] [Google Scholar]
  • 7.Carrington JC, Dougherty WG. Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. J Virol. 1987;61:2540–2548. doi: 10.1128/jvi.61.8.2540-2548.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Carrington JC, Dougherty WG. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci USA. 1988;85:3391–3395. doi: 10.1073/pnas.85.10.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Dougherty WG, Parks TD. Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology. 1989;172:145–155. doi: 10.1016/0042-6822(89)90116-5. [DOI] [PubMed] [Google Scholar]
  • 10.Dougherty WG, Parks TD. Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology. 1991;183:449–456. doi: 10.1016/0042-6822(91)90974-g. [DOI] [PubMed] [Google Scholar]
  • 11.Dougherty WG, Parks TD, Cary SM, Bazan JF, Fletterick RJ. Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology. 1989;172:302–310. doi: 10.1016/0042-6822(89)90132-3. [DOI] [PubMed] [Google Scholar]
  • 12.García JA, Laín S, Cervera MT, Riechmann JL, Martín MT. Mutational analysis of plum pox potyvirus polyprotein processing by the Nla protease in Escherichia coli. J Gen Virol. 1990;71:2773–2779. doi: 10.1099/0022-1317-71-12-2773. [DOI] [PubMed] [Google Scholar]
  • 13.García JA, Martín MT, Cervera MT, Riechmann JL. Proteolytic processing of the plum pox potyvirus polyprotein by the Nla protease at a novel cleavage site. Virology. 1992;188:697–703. doi: 10.1016/0042-6822(92)90524-s. [DOI] [PubMed] [Google Scholar]
  • 14.García JA, Riechmann JL, Laín S. Artificial cleavage site recognized by plum pox potyvirus protease in Escherichia coli. J Virol. 1989;63:2457–2460. doi: 10.1128/jvi.63.6.2457-2460.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.García JA, Riechmann JL, Laín S. Proteolytic activity of the plum pox potyvirus Nla-like protein in Escherichia coli. Virology. 1989;170:362–369. doi: 10.1016/0042-6822(89)90426-1. [DOI] [PubMed] [Google Scholar]
  • 16.García JA, Riechmann JL, Martín MT, Laín S. Proteolytic activity of the plum pox potyvirus Nla-like protein on excess of natural and artificial substrates in Escherichia coli. FEBS Lett. 1989;256:269–273. doi: 10.1016/0014-5793(89)81550-9. [DOI] [PubMed] [Google Scholar]
  • 17.Ghabrial SA, Smith HA, Parks TD, Dougherty WG. Molecular genetic analyses of the soybean mosaic virus Nla protease. J Gen Virol. 1990;71:1921–1927. doi: 10.1099/0022-1317-71-9-1921. [DOI] [PubMed] [Google Scholar]
  • 18.Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 1989;243:103–114. doi: 10.1016/0014-5793(89)80109-7. [DOI] [PubMed] [Google Scholar]
  • 19.Gorbalenya AE, Koonin E, Lai MM-C. Putative papainrelated thiol proteases of positive-strand RNA viruses. Identification of rubi-and aphtovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, α-and coronaviruses. FEBS Lett. 1991;288:201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Hellmann GM, Shaw JG, Rhoads RE. In vitro analysis of tobacco vein mottling virus Nla cistron: Evidence for a virus encoded protease. Virology. 1988;163:554–562. doi: 10.1016/0042-6822(88)90296-6. [DOI] [PubMed] [Google Scholar]
  • 21.Korant BD, Brzin J, Turk V. Cystatin, a protein inhibitor of cysteine proteases alters viral protein cleavages in infected human cells. Biochem Biophys Res Commun. 1985;127:1072–1076. doi: 10.1016/s0006-291x(85)80054-1. [DOI] [PubMed] [Google Scholar]
  • 22.Korant BD, Towatari T, Ivanoff L, Petteway S, Jr, Brzin J, Lenarcic B, Turk V. Viral therapy: prospects for protease inhibitors. J Cell Biochem. 1986;32:91–95. doi: 10.1002/jcb.240320202. [DOI] [PubMed] [Google Scholar]
  • 23.Laín S, Riechmann JL, García JA. The complete nucleotide sequence of plum pox potyvirus RNA. Virus Res. 1989;13:157–172. doi: 10.1016/0168-1702(89)90013-0. [DOI] [PubMed] [Google Scholar]
  • 24.Mavankal G, Rhoads R. In vitro cleavage at or near the N-terminus of the helper component protein in the tobacco vein mottling virus polyprotein. Virology. 1991;185:721–731. doi: 10.1016/0042-6822(91)90543-k. [DOI] [PubMed] [Google Scholar]
  • 25.Oh CS, Carrington JC. Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology. 1989;173:692–699. doi: 10.1016/0042-6822(89)90582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Riechmann JL, Laín S, García JA. Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992;73:1–16. doi: 10.1099/0022-1317-73-1-1. [DOI] [PubMed] [Google Scholar]
  • 27.Riechmann JL, Laín S, García JA. Identification of the initiation codon of plum pox potyvirus genomic RNA. Virology. 1991;185:544–552. doi: 10.1016/0042-6822(91)90524-f. [DOI] [PubMed] [Google Scholar]
  • 28.Riechmann JL, Laín S, García JA. Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology. 1990;177:710–716. doi: 10.1016/0042-6822(90)90537-2. [DOI] [PubMed] [Google Scholar]
  • 29.Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB, Galpin SA, Handa BK, Kay J, Kröhn A, Lambert RW, Merret JH, Mills JS, Parkes KEB, Redshaw S, Ritchie AJ, Taylor DL, Thomas GJ, Machin PJ. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990;248:358–361. doi: 10.1126/science.2183354. [DOI] [PubMed] [Google Scholar]
  • 30.Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-c. [DOI] [PubMed] [Google Scholar]
  • 31.Verchot J, Herndon KL, Carrington JC. Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: Identification of essential residues and requirements for autoproteolysis. Virology. 1992;190:298–306. doi: 10.1016/0042-6822(92)91216-h. [DOI] [PubMed] [Google Scholar]
  • 32.Verchot J, Koonin EV, Carrington JC. The 35-kDa protein from the N-terminus of a potyviral polyprotein functions as a third virus-encoded proteinase. Virology. 1991;185:527–535. doi: 10.1016/0042-6822(91)90522-d. [DOI] [PubMed] [Google Scholar]

Articles from Plant Molecular Biology are provided here courtesy of Nature Publishing Group

RESOURCES