Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Mar 4;44(1):37–44. doi: 10.1134/S0026893310010061

Screening efficient siRNAs in vitro as the candidate genes for chicken anti-avian influenza virus H5N1 breeding

P Zhang 1, J G Wang 1, J Y Wan 2, W Q Liu 1,
PMCID: PMC7089267  PMID: 32214469

Abstract

The frequent disease outbreaks caused by avian influenza virus (AIV) not only affect the poultry industry but also pose a threat to human safety. To address the problem, RNA interference (RNAi) has recently been widely used as a potential antiviral approach. Transgenesis, in combination with RNAi to specifically inhibit AIV gene expression, has been proposed to make chickens resistant to avian influenza. For the transgenic breeding, screening the efficient siRNAs in vitro as the candidate genes is one of the most important tasks. Here, we combined an online search tool and a series of bioinformatics programs with a set of rules for designing the siRNAs targeting different mRNA regions of AIV H5N1 subtype. By this method we chose five rational siRNAs, constructed five U6 promoter-driven shRNA expression plasmids contained the siRNA genes, and used these to produce stably transfected Madin-Darby canine kidney (MDCK) cells. Data from virus titration, IFA, PUI-stained flow cytometry, real-time quantitative RT-PCR and DAS-ELISA analyses showed that all five stably transfected cell lines were effectively resistant to viral replication when exposed to 100 CCID50 of AIV, and we finally chose the most effective plasmids (pSi-604i and pSi-1597i) as the candidates for making the transgenic chickens. These findings provide baseline information for breeding transgenic chickens resistant to AIV in combination with RNAi.

Key words: RNAi, SiRNA, Avian influenza virus, MDCK cells, transgenic breeding

Footnotes

The article is published in the original

References

  • 1.Lamb R.A., Krug R.M. Orthomyxoviridae: The Viruses and Their Replication. Philadelphia: Lippincott; 2001. [Google Scholar]
  • 2.Parvin J.D., Moscona A., Pan W.T., Leider J.M., Palese P. Measurement of the mutation rates of animal viruses: Influenza A virus and poliovirus type 1. J. Virology. 1986;59:377–383. doi: 10.1128/jvi.59.2.377-383.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992;56:152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ge Q. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA. 2003;100:2718–2723. doi: 10.1073/pnas.0437841100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jia H., Ge X., Guo X., Yang H., Yu K., Chen Z., Chen Y., Cha Z. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res. 2008;79:95–104. doi: 10.1016/j.antiviral.2007.12.003. [DOI] [PubMed] [Google Scholar]
  • 6.Pomerantz R.J. RNA interference meets HIV-1: Will silence be golden? Nat Med. 2002;8:659–660. doi: 10.1038/nm0702-659. [DOI] [PubMed] [Google Scholar]
  • 7.Wu C.J., Huang H.W., Liu C.Y., Hong C.F., Chan Y.L. Inhibition of SARS-CoV replication by siRNA. Antiviral Res. 2005;65:45–48. doi: 10.1016/j.antiviral.2004.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Tompkins S.M., Lo C.Y., Tumpey T.M., Epstein S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA. 2004;101:8682–8686. doi: 10.1073/pnas.0402630101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hui E.K.W., Yap E.M., An D.S., Chen I.S.Y., Nayak D.P. Inhibition of influenza virus matrix (M1) protein expression and virus replication by U6 promoter-driven and lentivirus-mediated delivery of siRNA. J. Gen. Virol. 2004;85:1877–1884. doi: 10.1099/vir.0.79906-0. [DOI] [PubMed] [Google Scholar]
  • 10.Nagao A., Zhao X., Takegami T., Nakagawa H., Matsui S., Matsunaga T., Ishigaki Y. Multiple shRNA expressions in a single plasmid vector improve RNAi against the XPA gene. Biochem. Biophys. Res. Commun. 2008;370:301–305. doi: 10.1016/j.bbrc.2008.03.078. [DOI] [PubMed] [Google Scholar]
  • 11.Zhou K., He H., Wu Y., Duan M. RNA interference of avian influenza virus H5N1 by inhibiting viral mRNA with siRNA expression plasmids. J. Biotechnology. 2008;135:140–144. doi: 10.1016/j.jbiotec.2008.03.007. [DOI] [PubMed] [Google Scholar]
  • 12.Holen T., Amarzguioui M., Wiiger M.T., Babaie E., Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 2002;30:1757–1766. doi: 10.1093/nar/30.8.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bohula E.A., Salisbury A.J., Sohail M., Playford M.P., Riedemann J., Southern E.M., Macaulay V.M. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J. Biol. Chemistry. 2003;278:15991–15997. doi: 10.1074/jbc.M300714200. [DOI] [PubMed] [Google Scholar]
  • 14.Luo K.Q., Chang D.C. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem. Biophys. Res. Commun. 2004;318:303–310. doi: 10.1016/j.bbrc.2004.04.027. [DOI] [PubMed] [Google Scholar]
  • 15.Reed L.J., Muench R.H. A simple method to estimate fifty percent end points. Am. J. Hyg. 1938;27:493–497. [Google Scholar]
  • 16.Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W.S., Khvorova A. Rational siRNA design for RNA interference. Nature Biotechnol. 2004;22:326–330. doi: 10.1038/nbt936. [DOI] [PubMed] [Google Scholar]
  • 17.Ui-Tei K., Naito Y., Takahashi F., Haraguchi T., Ohki-Hamazaki H., Juni A., Ueda R., Saigo K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–948. doi: 10.1093/nar/gkh247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Santoyo J., Vaquerizas J.M., Dopazo J. Highly specific and accurate selection of siRNAs for high-throughput functional assays. Bioinformatics. 2005;21:1376–1382. doi: 10.1093/bioinformatics/bti196. [DOI] [PubMed] [Google Scholar]
  • 19.Bucher E., Hemmes H., de Haan P., Goldbach R., Prins M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J. Gen. Virol. 2004;85:983–991. doi: 10.1099/vir.0.19734-0. [DOI] [PubMed] [Google Scholar]
  • 20.Bailey C. DNA-directed RNA interference: Hairpin cloning and expression made easy. Promega Notes. 2004;87:7–11. [Google Scholar]
  • 21.Yang S.Y., Wang J.G., Cui H.X., Sun S.G., Li Q., Gu L., Hong Y., Liu P.P., Liu W.Q. Efficient generation of transgenic mice by direct intraovarian injection of plasmid DNA. Biochem. Biophys. Res. Commun. 2007;358:266–271. doi: 10.1016/j.bbrc.2007.04.112. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology are provided here courtesy of Nature Publishing Group

RESOURCES