Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1986;72(1):47–65. doi: 10.1007/BF00230635

Modifications of lysosomal enzymes in Dictyostelium discoideum

Hudson H Freeze 1,
PMCID: PMC7089276  PMID: 2434832

Abstract

This paper has two purposes. The first is to review the past studies on the structure, biosynthesis, and immunological properties of a class of glycoproteins, the lysosomal enzymes, in Dictyostelium discoideum. The second purpose is to present new data on the analysis of mutant strains altered in the biosynthesis of the lipid-linked precursor of N-linked oligosaccharides, and on the characterization of new carbohydrate antigenic determinants found on multiple proteins in Dictyostelium. We will also show how a combination of genetic, biochemical and immunochemical approaches have been used to unravel a portion of the glycosylation pathway in Dictyostelium.

The long-term goal of these studies is to use Dictyostelium discoideum as a model system to understand the functions of a variety of glycoconjugates in a multicellular organism. The existence of a large number of mutant strains which are altered in a variety of cellular functions, development and the posttranslational modification of multiple proteins, offers a great opportunity to explore this area.

Keywords: Dictyostelium discoideum, lysosomal enzymes, glycosylation, sulfated N-linked oligosaccharides, common antigens

References

  • 1.Kornfeld R, Kornfeld S. Assembly of asparagine linked oligosaccharides. Ann Rev Biochem. 1985;54:641. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  • 2.Snider MD. Biosynthesis of glycoproteins: formation of N-linked oligosaccharides. In: Ginsburg V, Robbins PW, editors. Biology of Carbohydrates, Vol 2. NY: John Wiley and Sons, Inc.; 1984. pp. 164–193. [Google Scholar]
  • 3.Kobata A. The carbohydrates of glycoproteins. In: Ginsburg V, Robbins PW, editors. Biology of Carbohydrates, Vol 2. NY: John Wiley and Sons, Inc.; 1984. pp. 88–155. [Google Scholar]
  • 4.Matsuura F, Jones MZ. Structural characterization of novel complex oligosaccharides accumulated in the caprine beta-mannosidosis kidney. J Biol Chem. 1985;260:15239–15245. [PubMed] [Google Scholar]
  • 5.Lederkremer GZ, Parodi AJ. 3-O-methylation of mannose residues. J Biol Chem. 1984;259:12514–12518. [PubMed] [Google Scholar]
  • 6.Freeze HH, Wolgast D. Structural analysis of N-linked oligosaccharides from glycoproteins secreted by Dictyostelium discoideum. J Biol Chem. 1986;261:127–134. [PubMed] [Google Scholar]
  • 7.Parkkinen J, Finne J. Occurence of N-acetylglucosamine 6-phosphate in complex carbohydrates. J Biol Chem. 1985;260:10971–10975. [PubMed] [Google Scholar]
  • 8.Green ED, van Halbeek H, Boime I, Baenziger JU. Structural elucidation of the disulfated oligosaccharide from bovine lutropin. J Biol Chem. 1985;260:15623–15630. [PubMed] [Google Scholar]
  • 9.Edelman GM. Cell adhesion molecules. Science. 1983;219:450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
  • 10.Schauer R. Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem. 1982;40:11131–111234. doi: 10.1016/s0065-2318(08)60109-2. [DOI] [PubMed] [Google Scholar]
  • 11.Ivatt RJ. Role of glycoproteins during early mammalian embryogenesis. In: Ivatt RJ, editor. The Biology of Glycoproteins. NY: Plenum Press; 1984. pp. 95–81. [Google Scholar]
  • 12.Fukuda M, Fukuda M. Cell surface glycoproteins and carbohydrate antigens in development and differentiation of human erythroid cells. In: Ivatt RJ, editor. The Biology of Glycoproteins. NY: Plenum Press; 1984. pp. 183–234. [Google Scholar]
  • 13.Green ED, Morishima C, Boime I, Baenziger JU. Structural requirements for sulfation of asparagine-linked oligosaccharides of lutropin. Proc Natl Acad Sci USA. 1985;82:7850–7854. doi: 10.1073/pnas.82.23.7850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Sly WS, Fischer HD. The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J Cell Biochem. 1982;18:67–85. doi: 10.1002/jcb.1982.240180107. [DOI] [PubMed] [Google Scholar]
  • 15.Hoflack B, Kornfeld S. Purification and characterization of a cation-dependent mannose phosphate receptor from murine P388D1 macrophages and bovine liver. J Biol Chem. 1985;260:12008–12014. [PubMed] [Google Scholar]
  • 16.Sharp JK, Valent B, Albersheim P. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem. 1984;259:11312–11320. [PubMed] [Google Scholar]
  • 17.Albersheim P, Darvill AG: Oligosaccharins: Fragments of the plant cell wall have been discovered that serve as regulatory molecules. They help to control such functions as growth, development, reproduction and defense against disease. Scientific American, 1985, pp 58–64.
  • 18.Stanley P, Chaney W. Control of carbohydrate processing: the LeclA CHO mutation results in partial loss of N-acetylglucosaminyltransferase 1 activity. Mol Cell Biol. 1985;5:1204–1211. doi: 10.1128/mcb.5.6.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Stanley P. Selection of specific wheat germ agglutininresistant (WgaR) phenotypes from chinese hamster ovary cell populations containing numerous LecR genotypes. Mol Cell Biol. 1981;1:687–696. doi: 10.1128/mcb.1.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Campbell C, Stanley P. A dominant mutation to ricin resistance in chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltrans ferase III activity. J Biol Chem. 1984;261:13370–13378. [PubMed] [Google Scholar]
  • 21.Stanley P. Membrane mutants of animal cells: Rapid identification of those with a primary defect in glycosylation. Mol Cell Biol. 1985;5:923–929. doi: 10.1128/mcb.5.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Loomis WF. Dictyostelium discoideum: A developmental system. NY: Academic Press; 1975. [Google Scholar]
  • 23.Loomis WF. The development of Dictyostelium discoideum. NY: Academic Press; 1982. [Google Scholar]
  • 24.Loomis WF, Knecht DA, Fuller DL: Adhesion mechanisms and multicellular control of cell-type divergence of Dictyostelium discoideum. In: Davidson E, Firtel R (eds). UCLA Symp in Mol and Cell Biol, Vol 51 (in press).
  • 25.Loomis WF: Regulation of cell-type-specific differentiation in Dictyostelium. Cold Spring Harbor Symp on Quantitative Biol Vol L, 1985. [DOI] [PubMed]
  • 26.Crean EV, Rossomando EF. Synthesis of a monnosyl phosphoryl polyprenol by the cellular slime mold Dictyostelium discoideum. Biochim Biophys Acta. 1977;498:439–441. doi: 10.1016/0304-4165(77)90282-3. [DOI] [PubMed] [Google Scholar]
  • 27.Rossler H, Peuckert W, Risse HJ, Eibl H. The biosynthesis of glycolipids during the differentiation of the slime mold Dictyostelium discoideum. J Mol Cell Biochem. 1978;24:65–72. doi: 10.1007/BF00229450. [DOI] [PubMed] [Google Scholar]
  • 28.Rossler HH, Schneider-Seedbach E, Malati T, Risse HJ. The dependence of glycosyltransferases in Dictyostelium discoideum on the structure of polyisoprenols. Mol Cell Biochem. 1981;34:65–72. doi: 10.1007/BF02354860. [DOI] [PubMed] [Google Scholar]
  • 29.Rossler HH, Peuckert W, Risse HJ. The biosynthesis of glycolipids during the differentiation of the slime mold Dictyostelium discoideum. Mol Cell Biochem. 1978;20:3–15. doi: 10.1007/BF00229450. [DOI] [PubMed] [Google Scholar]
  • 30.Freeze H, Loomis WF. Isolation and characterization of a component of the surface sheath of Dictyostelium discoideum. J Biol Chem. 1977;252:820–924. [PubMed] [Google Scholar]
  • 31.Grant WN, Williams KL. Monoclonal antibody characterisation of slime sheath: the extracellular matrix of Dictyostelium discoideum. EMBO J. 1983;2:935–940. doi: 10.1002/j.1460-2075.1983.tb01524.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Grant WN, Welker DL, Williams KL. A polymorphic presporespecific cell surface glycoprotein is present in the extracellular matrix of Dictyostelium discoideum. Mol Cell Biol. 1985;5:2559–2566. doi: 10.1128/mcb.5.10.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.West CW: Glycoantigen expression is regulated both temporally and spatially during development in the cellular slime molds Dictyostelium discoideum and D. mucoroides. This volume. [DOI] [PubMed]
  • 34.Freeze H, Loomis WF. Chemical analysis of stalk components of Dictyostelium discoideum. Biochim Biophys Acta. 1978;539:529–537. doi: 10.1016/0304-4165(78)90086-7. [DOI] [PubMed] [Google Scholar]
  • 35.Freeze H, Loomis WF. The role of the fibrillar component of the surface sheath in the morphogenesis of Dictyostelium discoideum. Dev Biol. 1977;56:184–194. doi: 10.1016/0012-1606(77)90161-0. [DOI] [PubMed] [Google Scholar]
  • 36.Vardy PH, Fisher LR, Smith E, Williams KL. Traction proteins in the extracellular matrix of Dictyostelium discoideum slugs. Nature. 1986;320:526–529. [Google Scholar]
  • 37.Wilhelms OH, Luderitz O, Westphal O, Gerisch G. Glycosphingolipids and glycoproteins in the wild-type and in a non-aggregating mutant of Dictyostelium discoideum. Eur J Biochem. 1974;48:89–101. doi: 10.1111/j.1432-1033.1974.tb03746.x. [DOI] [PubMed] [Google Scholar]
  • 38.Bauer R, Rath M, Risse HJ. The biosynthesis of glycoproteins during the development of Dictyostelium discoideum. The transfer of D-mannose in vegetative and aggregated cells. Eur J Biochem. 1971;21:179–190. doi: 10.1111/j.1432-1033.1971.tb01454.x. [DOI] [PubMed] [Google Scholar]
  • 39.Ivatt RJ, Prem Das O, Henderson EJ, Robbins PW. Developmental regulation of glycoprotein biosynthesis in Dictyostelium. J Supramol Struc Cell Biochem. 1981;17:359–368. doi: 10.1002/jsscb.380170407. [DOI] [PubMed] [Google Scholar]
  • 40.Freeze HH, Yeh R, Miller AL, Kornfeld S. The mod A mutant of Dictyostelium discoideum is missing the alpha 1,3-glucosidase involved in asparagine-linked oligosaccharide processing. J Biol Chem. 1983;258:14880–14884. [PubMed] [Google Scholar]
  • 41.Freeze HH, Miller AL, Kaplan A. Acid hydrolases from Dictyostelium discoideum contain phosphomannosyl recognition markers. J Biol Chem. 1980;255:11081–11084. [PubMed] [Google Scholar]
  • 42.Freeze H, Miller AL. ModA, a posttranslational mutation affecting phosphorylated and sulfated glycopeptides in Dictyostelium discoideum. Mol Cell Biochem. 1980;35:17–27. doi: 10.1007/BF02358184. [DOI] [PubMed] [Google Scholar]
  • 43.Freeze HH, Yeh R, Miller AL, Kornfeld S. Structural analysis of the asparagine-linked oligosaccharides from three lysosomal enzymes of Dictyostelium discoideum. Evidence for an unusual acid-stable phosphodiester. J Biol Chem. 1983;258:14874–14879. [PubMed] [Google Scholar]
  • 44.Gabel CA, Costello CE, Reinhold VN, Kurz L, Kornfeld S. Identification of methylphosphomannosyl residues as components of the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. J Biol Chem. 1984;259:13762–13769. [PubMed] [Google Scholar]
  • 45.Henderson EJ. The role of glycoproteins in the life cycle of the cellular slime mold Dictyostelium discoideum. In: Ivatt RJ, editor. The Biology of Glycoproteins. NY: Plenum Press; 1984. pp. 371–443. [Google Scholar]
  • 46.Knecht DA, Green ED, Loomis WF, Dimond RL. Developmental changes in the modification of lysosomal enzymes in Dictyostelium discoideum. Devel Biol. 1985;107:490–502. doi: 10.1016/0012-1606(85)90330-6. [DOI] [PubMed] [Google Scholar]
  • 47.Moore BR: Effects of the change in the post-translational modification on the lysosomal enzymes in Dictyostelium discoideum. Thesis, State Univ NY, Buffalo, New York.
  • 48.Judelson HS: Synthesis and post-translational modification of lysosomal proteins in Dictyostelium discoideum. Thesis University of Wisconsin, Madison, Wisconsin.
  • 49.Bertholdt G, Staler J, Bozzaro S, Fichtner B, Gerisch G. Carbohydrate and other epitopes of the contact site A glycoprotein of Dictyostelium discoideum as characterized by monoclonal antibodies. Cell Differentiation. 1985;16:187–202. doi: 10.1016/0045-6039(85)90516-0. [DOI] [PubMed] [Google Scholar]
  • 50.Bozzaro S. Cell surface carbohydrates and cell recognition in Dictyostelium. Cell Differentiation. 1985;17:67–82. doi: 10.1016/0045-6039(85)90473-7. [DOI] [PubMed] [Google Scholar]
  • 51.Every D, Ashworth JM. The purification and properties of the extracellular glycosidases of the cellular slime mold, Dictyostelium discoideum. Biochem J. 1973;133:37–47. doi: 10.1042/bj1330037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980;255:4937–4945. [PubMed] [Google Scholar]
  • 53.Erickson AH, Ginns EI, Barranger JA. Biosynthesis of the lysosomal enzyme glucocerebrosidase. J Biol Chem. 1985;260:14319–14324. [PubMed] [Google Scholar]
  • 54.Hoflack B, Kornfeld S: Glycoconjugates: Proceedings of the VIII Int Symp Vol 1, Houston, Texas, 1985, pp 144.
  • 55.Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest. 1986;77:1–6. doi: 10.1172/JCI112262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Gabel CA, Goldberg DE, Kornfeld S. Identification and characterization of cells deficient in the mannose 6-phosphate receptor: evidence for an alternate pathway for lysosomal enzyme targeting. Proc Natl Acad Sci USA. 1983;80:775–779. doi: 10.1073/pnas.80.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Barranger JA. 13th Int Congress of Biochem, TH-S36-2, Amsterdam. Amsterdam, The Netherlands: Elsevier Science Publishers; 1985. [Google Scholar]
  • 58.Mierendorf RC, Jr, Cardelli JA, Dimond RL. Pathways involved in targeting and secretion of a lysosomal enzyme in Dictyostelium discoideum. J Cell Biol. 1985;100:1777–1787. doi: 10.1083/jcb.100.5.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Pannell R, Wood L, Kaplan A. Processing and secretion of alpha-mannosidase forms by Dictyostelium discoideum. J Biol Chem. 1982;257:9861–9865. [PubMed] [Google Scholar]
  • 60.Wood L, Kaplan A. Transit of alpha-mannosidase during its maturation in Dictyostelium discoideum. J Cell Biol. 1985;101:2073–2069. doi: 10.1083/jcb.101.6.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Freeze HH. Mannose 6-sulfate is present in the N-linked oligosaccharides of lysosomal enzymes of Dictyostelium. Arch Biochem Biophys. 1985;243:690–693. doi: 10.1016/0003-9861(85)90547-8. [DOI] [PubMed] [Google Scholar]
  • 62.Cardelli JA, Golumbeski GS, Woychik NA, Ebert DL, Mierendorf RC, Dimond RL: Defining the intracellular localization pathways followed by lysosomal enzymes in Dictyostelium discoideum. Meth Cell Biol, Spudich J ed, in press. [DOI] [PubMed]
  • 63.Reitman ML, Kornfeld S. Lysosomal enzyme targeting. N-acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes. J Biol Chem. 1981;256:11977–11980. [PubMed] [Google Scholar]
  • 64.Couso R, Lang L, Tang J, Kornfeld S: Glycoconjugates Proceedings of the VIIIth Intl Symposium, Vol 1, Houston, Texas, 1985, pp 197.
  • 65.Freeze HH, Wolgast D. Biosynthesis of methylphosphomannosyl residues in the oligosaccharides of Dictyostelium discoideum glycoproteins. Evidence that the methyl group is derived from methionine. J Biol Chem. 1986;261:135–141. [PubMed] [Google Scholar]
  • 66.Cardelli JA, Golumbeski GS, Dimond RL. Lysosomal enzymes in Dictyostelium discoideum are transported at distinctly different rates. J Cell Biol. 1986;102:1264–1270. doi: 10.1083/jcb.102.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Fischer HD, Gonzales-Noriega A, Sly WS, Morre DJ. Phosphomannosyl-enzyme receptors in rat liver. J Biol Chem. 1980;255:9608–9615. [PubMed] [Google Scholar]
  • 68.Gabel CA, Goldberg DE, Kornfeld S. Lysosomal enzyme oligosaccharide phosphorylation in mouse lymphoma cells: specificity and kinetics of binding to the mannose 6-phosphate receptor in vivo. J Cell Biol. 1982;95:536–542. doi: 10.1083/jcb.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Ashworth JM, Quance J. Enzyme synthesis in myxamoebae of the cellular slime mould Dictyostelium discoideum during growth in axenic culture. Biochem J. 1972;126:601–608. doi: 10.1042/bj1260601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Dimond RL, Knecht DA, Jordan KB, Burns RA, Livi GP. secretory mutants in the cellular slime mold Dictyostelium discoideum. Meth Enzymol. 1983;96:815–828. doi: 10.1016/s0076-6879(83)96069-x. [DOI] [PubMed] [Google Scholar]
  • 71.Cardelli JA, Dimond RL: Targeting and proteolytic processing of lysosomal enzymes in Dictyostelium discoideum. Microbiology (in press).
  • 71a.Anumula KR, Bahl OP. Biosynthesis of lutropin in ovine pituitary slices: incorporation of [35S]sulfate in carbohydrate units. Arch Biochem Biophys. 1983;220:645–651. doi: 10.1016/0003-9861(83)90458-7. [DOI] [PubMed] [Google Scholar]
  • 72.Lindberg B. Methylation analysis of polysaccharides. Meth Enzymol. 1972;28:178–178. [Google Scholar]
  • 73.Yamashita K, Ueda I, Kobata A. Sulfated asparagine-linked sugar chains of hen egg albumin. J Biol Chem. 1983;258:14144–14147. [PubMed] [Google Scholar]
  • 74.Bhavanandan VP, Meyer K. Mucopolysaccharides: Nacetylglucosamine- and galactose-6-sulfates from keratosulfate. Science. 1966;151:1404–1405. doi: 10.1126/science.151.3716.1404. [DOI] [PubMed] [Google Scholar]
  • 75.Rees DA. Enzymic synthesis of 3:6-anhydro-L-galactose within porphyran from L-galactose 6-sulphate units. Biochem J. 1961;81:347. doi: 10.1042/bj0810347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Durant GJ, Hendrickson HR, Montgomery R. Studies on the structure of heparin. Arch Biochem Biophys. 1962;99:418–428. [Google Scholar]
  • 77.Love J, Percival E: The polysaccharides of the green seaweed codium fragile. Part II J Chem Soc, 1964, pp 3338–3345.
  • 78.Percival E: Sulfated polysaccharides metabolized by the marine chlorophyceae — a review. In: Schweiger RG (ed). Carbohydrate Sulfates. ACS Symposium Series 77, Am Chem Soc, Washington DC, 1978, pp 203–212.
  • 79.WN Haworth, J Jackson, F Smith: The properties of 3:6 anhydrogalactose. J Chem Soc 620–632, 1940.
  • 80.Narasimhan S. Control of glycoprotein synthesis. UDPGIcNAc:glycopeptide beta4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds G1cNAc in beta 1–4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem. 1982;257:10235–10242. [PubMed] [Google Scholar]
  • 81.Gustafson GL, Milner LA. Occurrence of Nacetylglucosamine-I-phosphate in proteinase I from Dictyostelium discoideum. J Biol Chem. 1980;255:7208–7210. [PubMed] [Google Scholar]
  • 82.Freeze HH. Interaction of Dictyostelium discoideum lysosomal enzymes with the mammalian phosphomannosyl receptor. The importance of oligosaccharides which contain phosphodiesters. J Biol Chem. 1985;260:8857–8864. [PubMed] [Google Scholar]
  • 83.Dimond RL, Loomis WF. Structure and function of betaglucosidases in Dictyostelium discoideum. J Biol Chem. 1976;251:2680–2687. [PubMed] [Google Scholar]
  • 84.Knecht DA, Dimond RL. Lysosomal enzymes possess a common antigenic determinant in the cellular slime mold, Dictyostelium discoideum. J Biol Chem. 1981;256:3564–3575. [PubMed] [Google Scholar]
  • 85.Knecht DA, Dimond RL, Wheeler S, Loomis WF. Antigenic determinants shared by lysosomal proteins of Dictyostelium discoideum. Characterization using monoclonal antibodies and isolation of mutations affecting the determinant. J Biol Chem. 1984;259:10633–10640. [PubMed] [Google Scholar]
  • 86.Freeze HH, Mierendorf RC, Wunderlich R, Dimond RL. Sulfated oligosaccharides block antibodies to many Dictyostelium discoideum acid hydrolases. J Biol Chem. 1984;259:10641–10643. [PubMed] [Google Scholar]
  • 87.Gustafson GL, Milner LA. Immunological relationship between beta-N-acetylglucosaminidase and proteinase I from Dictyostelium discoideum. Biochem Biophys Res Comm. 1980;94:1439–1444. doi: 10.1016/0006-291x(80)90580-x. [DOI] [PubMed] [Google Scholar]
  • 88.ozzaro S, Merkl R. Monoclonal antibodies against Dictyostelium plasma membranes their binding to simple sugars. Cell Diff. 1985;17:83–94. doi: 10.1016/0045-6039(85)90474-9. [DOI] [PubMed] [Google Scholar]
  • 89.Freer SJ, Schimke RT, Freeze H, Loomis WF. Characterization and genetic mapping of modA. A mutation in the post-translational modification of the glycosidases of Dictyostelium discoideum. J Biol Chem. 1978;253:4102–4106. [PubMed] [Google Scholar]
  • 90.Ebert D, Cardelli J, Dimond RL: Manuscript in preparation.
  • 91.Lemansky P, Gieselmann V, Hasilik A, von Figura K. Cathepsin D and beta-hexosaminidase synthesized in the presence of 1-deoxynojirimycin accumulate in the endoplasmic reticulum. J Biol Chem. 1984;259:10129–10135. [PubMed] [Google Scholar]
  • 92.Repp R, Tamura T, Boschek CB, Wege H, Schwarz RT, Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of coronavirus particles. J Biol Chem. 1985;260:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Rosner MR, Hubbard SC, Ivatt RJ, Robbins PW. [35] Nasparagine-linked oligosaccharides: biosynthesis of the lipid-linked oligosaccharides. Meth Enzymol. 1982;83:399–408. doi: 10.1016/0076-6879(82)83037-1. [DOI] [PubMed] [Google Scholar]
  • 94.Mellis SJ, Baenziger JU. Separation of netural oligosaccharides by high-performance liquid chromatography. Anal Biochem. 1981;114:276–280. doi: 10.1016/0003-2697(81)90480-2. [DOI] [PubMed] [Google Scholar]
  • 95.Chapman A, Li E, Kornfeld S. The biosyntehsis of the major lipid-linked oligosaccharide of chinese hamster ovary cells occurs by the ordered addition of mannose residues. J Biol Chem. 1979;254:10243–10249. [PubMed] [Google Scholar]
  • 96.Sharkey DJ, Kornfeld S: Evidence for processing alpha-mannosidases that appear in developing Dictyostelium discoideum. In: Glycoconjugates, Proceedings of the VIIIth Intl Symposium, Volt. Houston, Texas, 1985, pp 462–463.
  • 97.Free SJ, Cockburn A, Loomis WF. alpha-Mannosidase-2: a developmentally regulated enzyme in Dictyostelium discoideum. Devel Biol. 1976;49:539–543. doi: 10.1016/0012-1606(76)90195-0. [DOI] [PubMed] [Google Scholar]
  • 98.Kasperek EM: The intracellular location of acid hydrolases during Dictyostelium development. Thesis, State Univ NY, Buffalo, New York.

Articles from Molecular and Cellular Biochemistry are provided here courtesy of Nature Publishing Group

RESOURCES