Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2013 May 29;57(5):971–990. doi: 10.1007/s11425-013-4652-7

The spreading frontiers of avian-human influenza described by the free boundary

ChengXia Lei 1, KwangIk Kim 2, ZhiGui Lin 1,
PMCID: PMC7089280  PMID: 32214993

Abstract

In this paper, a reaction-diffusion system is proposed to investigate avian-human influenza. Two free boundaries are introduced to describe the spreading frontiers of the avian influenza. The basic reproduction numbers r F0 (t) and R F0(t) are defined for the bird with the avian influenza and for the human with the mutant avian influenza of the free boundary problem, respectively. Properties of these two time-dependent basic reproduction numbers are obtained. Sufficient conditions both for spreading and for vanishing of the avian influenza are given. It is shown that if r F0 (0) < 1 and the initial number of the infected birds is small, the avian influenza vanishes in the bird world. Furthermore, if r F0 (0) < 1 and R F0(0) < 1, the avian influenza vanishes in the bird and human worlds. In the case that r F0 (0) < 1 and R F0(0) > 1, spreading of the mutant avian influenza in the human world is possible. It is also shown that if r F0 (t 0) ⩾ 1 for any t 0 ⩾ 0, the avian influenza spreads in the bird world.

Keywords: reaction-diffusion system, avian-human influenza, free boundary, spreading frontiers

Contributor Information

ChengXia Lei, Email: leichengxia001@163.com.

KwangIk Kim, Email: kimki@postech.ac.kr.

ZhiGui Lin, Email: zglin68@hotmail.com.

References

  • 1.Allen L J S, Bolker B M, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin Dyn Syst A. 2008;21:1–20. doi: 10.3934/dcds.2008.21.1. [DOI] [Google Scholar]
  • 2.Brauer F, Castollo-Chavez C. Mathematical Models in Population Biology and Epidemiology. New York: Springer; 2001. [Google Scholar]
  • 3.Capua I, Mutinelli F. A Colour Atlas and Text on Avian Influenza. Bologna, Italy: Papi Editore; 2001. [Google Scholar]
  • 4.Chen X F, Friedman A. A free boundary problem arising in a model of wound healing. SIAM J Math Anal. 2000;32:778–800. doi: 10.1137/S0036141099351693. [DOI] [Google Scholar]
  • 5.Daszak P, Cunningham A A, Hyatt A D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science. 2000;287:443–449. doi: 10.1126/science.287.5452.443. [DOI] [PubMed] [Google Scholar]
  • 6.Du Y H, Lin Z G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J Math Anal. 2010;42:377–405. doi: 10.1137/090771089. [DOI] [Google Scholar]
  • 7.Drancourt M, Raoult D. Molecular insights into the history of plague. Microbes Infect. 2002;4:105–109. doi: 10.1016/S1286-4579(01)01515-5. [DOI] [PubMed] [Google Scholar]
  • 8.Iwami S, Takeuchi Y, Liu X N. Avian-human influenza epidemic model. Math Biosci. 2007;207:1–25. doi: 10.1016/j.mbs.2006.08.001. [DOI] [PubMed] [Google Scholar]
  • 9.Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics. Proc Roy Soc Ser A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118. [DOI] [Google Scholar]
  • 10.Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics. Proc Roy Soc Ser A. 1932;138:55–83. doi: 10.1098/rspa.1932.0171. [DOI] [Google Scholar]
  • 11.Kim K I, Lin Z G, Zhang L. Avian-human influenza epidemic model with diffusion. Nonlinear Anal. 2010;11:313–322. doi: 10.1016/j.nonrwa.2008.11.015. [DOI] [Google Scholar]
  • 12.Kim K I, Lin Z G, Ling Z. Global existence and blowup of solutions to a free boundary problem for mutualistic model. Sci China Math. 2010;53:2085–2095. doi: 10.1007/s11425-010-4007-6. [DOI] [Google Scholar]
  • 13.Ladyzenskaja O A, Solonnikov V A, Ural’ceva N N. Providence, RI: Amer Math Soc. 1968. Linear and Quasilinear Equations of Parabolic Type. [Google Scholar]
  • 14.Li H, Gatsonis C. Dynamic optimal strategy for monitoring disease recurrence. Sci China Math. 2012;55:1565–1582. doi: 10.1007/s11425-012-4475-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size. Math Comput Modelling. 2002;35:1235–1243. doi: 10.1016/S0895-7177(02)00082-1. [DOI] [Google Scholar]
  • 16.Liao Q Y, Lam W W T, Dang V T, et al. What casues H5N1 avian influenza? Lay perceptions of N5N1 aetiology in South East and East Aisa. J Public Health. 2009;31:573–581. doi: 10.1093/pubmed/fdp043. [DOI] [PubMed] [Google Scholar]
  • 17.Lin Z G. A free boundary problem for a predator-prey model. Nonlinearity. 2007;20:1883–1892. doi: 10.1088/0951-7715/20/8/004. [DOI] [Google Scholar]
  • 18.Lin Z G. Introduction to Mathematical Ecology (in Chinese) Peking: Science Press; 2013. [Google Scholar]
  • 19.Liu B, Duan Y, Luan S. Dynamic of an SI epidemic model with external effects in a polluted environment. Nonlinear Anal. 2012;13:27–38. doi: 10.1016/j.nonrwa.2011.07.007. [DOI] [Google Scholar]
  • 20.Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulaters of population size. J Math Biol. 1992;30:693–716. doi: 10.1007/BF00173264. [DOI] [PubMed] [Google Scholar]
  • 21.Murray J D. Mathematical Biology II. New York: Springer; 2003. [Google Scholar]
  • 22.Obenauer J C, Denson J, Mehta P K, et al. Large-scale sequence analysis of avian influenza Isolates. Science. 2006;311:1576–1580. doi: 10.1126/science.1121586. [DOI] [PubMed] [Google Scholar]
  • 23.Okubo A, Levin S A. Diffusion and Ecological Problems: Modern Perspective. New York: Springer; 2001. [Google Scholar]
  • 24.Shaw K. The 2003 SARS outbreak and its impact on infection control practices. Public Health. 2003;2006120:8–14. doi: 10.1016/j.puhe.2005.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Shinya K, Ebina M, Yamada S, et al. Avian flu: Influenza virus receptors in the human airway. Nature. 2006;442:345–346. doi: 10.1038/440435a. [DOI] [PubMed] [Google Scholar]
  • 26.Taubenberger J K, Reid A H, Lourens R M, et al. Molecular virology: Was the 1918 pandemic caused by a bird flu? Was the 1918 flu avian in origin? Nature. 2006;440:E9–E10. doi: 10.1038/nature04825. [DOI] [PubMed] [Google Scholar]
  • 27.Xiao X, Yao J S, Shao S H, et al. Particular symmetry in RNA sequence of SARS and the origin of SARS coronavirus. Int J Nonlin Sci Numer Simul. 2005;6:181–186. [Google Scholar]
  • 28.Zhou P, Lin Z G. Global fast and slow solutions of a localized problem with free boundary. Sci China Math. 2012;55:1937–1950. doi: 10.1007/s11425-012-4443-6. [DOI] [Google Scholar]

Articles from Science China. Mathematics are provided here courtesy of Nature Publishing Group

RESOURCES