Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Aug 24;16(3):553–562. doi: 10.1007/s11030-012-9387-9

A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β

H Pradeep 1, G K Rajanikant 1,
PMCID: PMC7089308  PMID: 22918724

Abstract

We propose a novel cheminformatics approach that combines structure and ligand-based design to identify target-specific pharmacophores with well-defined exclusion ability. Our strategy includes the prediction of selective interactions, developing structure, and knowledge-based selective pharmacophore models, followed by database screening and molecular docking. This unique strategy was employed in addressing the off-target toxicity of Gsk3β and CDKs. The connections of Gsk3β in eukaryotic cell apoptosis and the extensive potency of Gsk3β inhibitors to block cell death have made it a potential drug-discovery target for many grievous human disorders. Gsk3β is phylogenetically very closely related to the CDKs, such as CDK1 and CDK2, which are suggested to be the off-target proteins of Gsk3β inhibitors. Here, we have employed novel computational approaches in designing the ligand candidates that are potentially inhibitory against Gsk3β, with well-defined the exclusion ability to CDKs. A structure-ligand -based selective pharmacophore was modeled. This model was used to retrieve molecules from the zinc database. The hits retrieved were further screened by molecular docking and protein–ligand interaction fingerprints. Based on these results, four molecules were predicted as selective Gsk3β antagonists. It is anticipated that this unique approach can be extended to investigate any protein–ligand specificity.

Keywords: Selective pharmacophore, Gsk3β, CDK1, CDK2, Molecular docking

References

  • 1.Kramer JA, Sagartz JE, Morris DL. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov. 2007;6:636–649. doi: 10.1038/nrd2378. [DOI] [PubMed] [Google Scholar]
  • 2.Lee DU, Jessen B. Off-target immune cell toxicity caused by AG-012986, a pan-CDK inhibitor, is associated with inhibition of p38 MAPK phosphorylation. J Biochem Mol Toxicol. 2012;26:101–108. doi: 10.1002/jbt.20415. [DOI] [PubMed] [Google Scholar]
  • 3.Cao Y, Marks JD, Huang Q, Rudnick SI, Xiong C, et al. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther. 2012;11:143–153. doi: 10.1158/1535-7163.MCT-11-0519. [DOI] [PubMed] [Google Scholar]
  • 4.Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426. doi: 10.1016/S0301-0082(01)00011-9. [DOI] [PubMed] [Google Scholar]
  • 5.Liu Y, Tanabe K, Baronnier D, Patel S, Woodgett J, et al. Conditional ablation of Gsk-3β in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia. 2010;53:2600–2610. doi: 10.1007/s00125-010-1882-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhu Z, Kremer P, Tadmori I, Ren Y, Sun D, et al. Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting STAT3 pathway independently of glycogen synthase kinase 3 beta. PLoS One. 2011;6:e23341. doi: 10.1371/journal.pone.0023341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol. 2008;153:S428–437. doi: 10.1038/bjp.2008.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HP, et al. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res. 2011;45:220–224. doi: 10.1016/j.jpsychires.2010.06.002. [DOI] [PubMed] [Google Scholar]
  • 9.Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, et al. Glycogen synthase kinase-3beta phosphorylates bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 2004;24:9993–10002. doi: 10.1523/JNEUROSCI.2057-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Morel M, Authelet M, Dedecker R, Brion JP. Glycogen synthase kinase-3beta and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience. 2010;167:1044–1056. doi: 10.1016/j.neuroscience.2010.02.077. [DOI] [PubMed] [Google Scholar]
  • 11.Mendes CT, Mury FB, de Sá Moreira E, Alberto FL, Forlenza OV, et al. Lithium reduces Gsk3b mRNA levels: implications for Alzheimer Disease. Eur Arch Psychiatry Clin Neurosci. 2009;259:16–22. doi: 10.1007/s00406-008-0828-5. [DOI] [PubMed] [Google Scholar]
  • 12.Zhai P, Sadoshima J. Glycogen synthase kinase-3β controls autophagy during myocardial ischemia and reperfusion. Autophagy. 2012;8:138–139. doi: 10.4161/auto.8.1.18314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hofmann C, Dunger N, Schölmerich J, Falk W, Obermeier F. Glycogen synthase kinase 3-β: a master regulator of toll-like receptor-mediated chronic intestinal inflammation. Inflamm Bowel Dis. 2010;16:1850–1858. doi: 10.1002/ibd.21294. [DOI] [PubMed] [Google Scholar]
  • 14.Schütz SV, Schrader AJ, Zengerling F, Genze F, Cronauer MV, et al. Inhibition of glycogen synthase kinase-3β counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer. PLoS One. 2011;6:e25341. doi: 10.1371/journal.pone.0025341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Jolivalt CG, Calcutt NA, Masliah E. Similar pattern of peripheral neuropathy in mouse models of type 1 diabetes and Alzheimer’s disease. Neuroscience. 2012;202:405–412. doi: 10.1016/j.neuroscience.2011.11.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ko HW, Kim EY, Chiu J, Vanselow JT, Kramer A, et al. A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3beta/SGG in circadian clocks. J Neurosci. 2010;30:12664–12675. doi: 10.1523/JNEUROSCI.1586-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Teli MK, Rajanikant GK. Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors. J Enzyme Inhib Med Chem. 2011;26:1–13. doi: 10.3109/14756360903524304. [DOI] [PubMed] [Google Scholar]
  • 18.Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008;451:591–595. doi: 10.1038/nature06531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Huang RB, Du QS, Wang CH, Chou KC. An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus. Biochem Biophys Res Commun. 2008;377:1243–1247. doi: 10.1016/j.bbrc.2008.10.148. [DOI] [PubMed] [Google Scholar]
  • 20.Du QS, Huang RB, Wang CH, Li XM, Chou KC. Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus. J Theor Biol. 2009;259:159–164. doi: 10.1016/j.jtbi.2009.03.003. [DOI] [PubMed] [Google Scholar]
  • 21.Chou KC. Structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004;11:2105–2134. doi: 10.2174/0929867043364667. [DOI] [PubMed] [Google Scholar]
  • 22.Chou KC, Watenpaugh KD, Heinrikson RL. A model of the complex between cyclin-dependent kinase 5 and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun. 1999;259:420–428. doi: 10.1006/bbrc.1999.0792. [DOI] [PubMed] [Google Scholar]
  • 23.Zhang J, Luan CH, Chou KC, Johnson GV. Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Proteins. 2002;48:447–453. doi: 10.1002/prot.10173. [DOI] [PubMed] [Google Scholar]
  • 24.Chou KC, Wei DQ, Zhong WZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun. 2003;308:148–151. doi: 10.1016/S0006-291X(03)01342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Wang SQ, Du QS, Chou KC. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun. 2007;354:634–640. doi: 10.1016/j.bbrc.2006.12.235. [DOI] [PubMed] [Google Scholar]
  • 26.Du QS, Sun H, Chou KC. Inhibitor design for SARS coronavirus main protease based on ”distorted key theory”. Med Chem. 2007;3:1–6. doi: 10.2174/157340607779317616. [DOI] [PubMed] [Google Scholar]
  • 27.Housaindokht MR, Bozorgmehr MR, Bahrololoom M. Analysis of ligand binding to proteins using molecular dynamics simulations. J Theor Biol. 2008;254:294–300. doi: 10.1016/j.jtbi.2008.04.036. [DOI] [PubMed] [Google Scholar]
  • 28.Salam NK, Nuti R, Sherman W. Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inform Model. 2009;49:2356–2368. doi: 10.1021/ci900212v. [DOI] [PubMed] [Google Scholar]
  • 29.Loving K, Salam NK, Sherman W. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aid Mol Des. 2009;23:541–554. doi: 10.1007/s10822-009-9268-1. [DOI] [PubMed] [Google Scholar]
  • 30.Schrödinger (2011) LigPrep, version 2.5. Schrödinger, LLC, New York
  • 31.Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, et al. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aid Mol Des. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. [DOI] [PubMed] [Google Scholar]
  • 32.Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. [DOI] [PubMed] [Google Scholar]
  • 33.Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2011;47:1750–1759. doi: 10.1021/jm030644s. [DOI] [PubMed] [Google Scholar]
  • 34.Dixon SL, Smondyrev AM, Rao SN. PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des. 2006;67:370–372. doi: 10.1111/j.1747-0285.2006.00384.x. [DOI] [PubMed] [Google Scholar]
  • 35.Koes DR, Camacho CJ. Pharmer: efficient and exact pharmacophore search. J Chem Inf Model. 2011;51:1307–1314. doi: 10.1021/ci200097m. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Irwin JJ, Shoichet BK. ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177–182. doi: 10.1021/ci049714+. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Nair SB, Teli MK, Pradeep H, Rajanikant GK. Computational identification of novel histone deacetylase inhibitors by docking based QSAR. Comput Biol Med. 2012;42:697–705. doi: 10.1016/j.compbiomed.2012.04.001. [DOI] [PubMed] [Google Scholar]
  • 38.Teli MK, Rajanikant GK. Identification of novel potential HIF-prolyl hydroxylase inhibitors by in silico screening. Mol Divers. 2012;16:193–202. doi: 10.1007/s11030-011-9338-x. [DOI] [PubMed] [Google Scholar]
  • 39.Coffman K, Brodney M, Cook J, Lanyon L, Pandit J, et al. 6-Amino-4-(pyrimidin-4-yl)pyridones: novel glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett. 2011;21:1429–1433. doi: 10.1016/j.bmcl.2011.01.017. [DOI] [PubMed] [Google Scholar]
  • 40.Gong L, Hirschfeld D, Tan YC, Heather Hogg J, Peltz G, et al. Discovery of potent and bioavailable GSK-3beta inhibitors. Bioorg Med Chem Lett. 2010;20:1693–1696. doi: 10.1016/j.bmcl.2010.01.038. [DOI] [PubMed] [Google Scholar]
  • 41.Kang NS, Lee GN, Kim CH, Bae MA, Kim I, et al. Identification of small molecules that inhibit GSK-3beta through virtual screening. Bioorg Med Chem Lett. 2009;19:533–537. doi: 10.1016/j.bmcl.2008.10.120. [DOI] [PubMed] [Google Scholar]
  • 42.Rochais C, Duc NV, Lescot E, de Oliveira Santos JS, Bureau R, et al. Synthesis of new dipyrrolo- and furopyrrolopyrazinones related to tripentones and their biological evaluation as potential kinases (CDKs1-5, GSK-3) inhibitors. Eur J Med Chem. 2009;44:708–716. doi: 10.1016/j.ejmech.2008.05.011. [DOI] [PubMed] [Google Scholar]
  • 43.Rouse MB, Seefeld MA, Leber JD, McNulty KC, Sun L, et al. Aminofurazans as potent inhibitors of AKT kinase. Bioorg Med Chem Lett. 2009;19:1508–1511. doi: 10.1016/j.bmcl.2009.01.002. [DOI] [PubMed] [Google Scholar]
  • 44.Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, et al. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem. 2009;52:1853–1863. doi: 10.1021/jm801317h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Kim HJ, Choo H, Cho YS, No KT, Pae AN. Novel GSK-3beta inhibitors from sequential virtual screening. Bioorg Med Chem. 2008;16:636–643. doi: 10.1016/j.bmc.2007.10.047. [DOI] [PubMed] [Google Scholar]
  • 46.Taha MO, Bustanji Y, Al-Ghussein MA, Mohammad M, Zalloum H. Pharmacophore modeling, quantitative structure-activity relationship analysis, and in silico screening reveal potent glycogen synthase kinase-3beta inhibitory activities for cimetidine, hydroxychloroquine, and gemifloxacin. J Med Chem. 2008;51:2062–2077. doi: 10.1021/jm7009765. [DOI] [PubMed] [Google Scholar]
  • 47.Liao QH, Gao QZ, Wei J, Chou KC. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR) Med Chem. 2011;7:24–31. doi: 10.2174/157340611794072698. [DOI] [PubMed] [Google Scholar]
  • 48.Wei J, Qu W, Ye Y, Gao Q. 3D pharmacophore based virtual screening of A 2A adenosine receptor antagonists. Protein Pept Lett. 2010;17:332–339. doi: 10.2174/092986610790780260. [DOI] [PubMed] [Google Scholar]
  • 49.Zhang T, Wei DQ, Chou KC. A pharmacophore model specific to active site of CYP1A2 with a novel molecular modeling explorer and CoMFA. Med Chem. 2012;8:198–207. [PubMed] [Google Scholar]
  • 50.Sirois S, Wei DQ, Du Q, Chou KC. Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci. 2004;44:1111–1122. doi: 10.1021/ci034270n. [DOI] [PubMed] [Google Scholar]
  • 51.Bi J, Yang H, Yan H, Song R, Fan J. Knowledge-based virtual screening of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus genome. J Theor Biol. 2011;281:133–139. doi: 10.1016/j.jtbi.2011.04.018. [DOI] [PubMed] [Google Scholar]
  • 52.Singh V, Somvanshi P. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis. Protein Pept Lett. 2010;17:269–276. doi: 10.2174/092986610790225950. [DOI] [PubMed] [Google Scholar]
  • 53.Wang SQ, Du QS, Zhao K, Li AX, Wei DQ, et al. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids. 2007;33:129–135. doi: 10.1007/s00726-006-0403-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Hanumanthappa P, Teli MK, Krishnamurthy RG. Generation of pharmacophore and atom based 3D-QSAR model of novel isoquinolin-1-ones and quinazolin-4-ones as potent inhibitors of TNFα. Med Chem. 2012;8:436–451. doi: 10.2174/1573406411208030436. [DOI] [PubMed] [Google Scholar]
  • 55.Chou KC. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem Sci. 1989;14:212–213. doi: 10.1016/0968-0004(89)90026-1. [DOI] [PubMed] [Google Scholar]
  • 56.Chou KC, Mao B. Collective motion in DNA and its role in drug intercalation. Biopolymers. 1988;27:1795–1815. doi: 10.1002/bip.360271109. [DOI] [PubMed] [Google Scholar]
  • 57.Chou KC, Zhang CT, Maggiora GM. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers. 1994;34:143–153. doi: 10.1002/bip.360340114. [DOI] [PubMed] [Google Scholar]
  • 58.Chou KC. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem. 1988;30:3–48. doi: 10.1016/0301-4622(88)85002-6. [DOI] [PubMed] [Google Scholar]
  • 59.Li XB, Wang SQ, Xu WR, Wang RL, Chou KC. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One. 2011;6:e28111. doi: 10.1371/journal.pone.0028111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wang JF, Gong K, Wei DQ, Li YX, Chou KC. Molecular dynamics studies on the interactions of PTP1B with inhibitors: from the first phosphate-binding site to the second one. Protein Eng Des Sel. 2009;22:349–355. doi: 10.1093/protein/gzp012. [DOI] [PubMed] [Google Scholar]
  • 61.Li J, Wei DQ, Wang JF, Yu ZT, Chou KC. Molecular dynamics simulations of CYP2E1. Med Chem. 2012;8:208–221. doi: 10.2174/157340612802084243. [DOI] [PubMed] [Google Scholar]
  • 62.Liu XY, Wang RL, Xu WR, Tang LD, Wang SQ, et al. Docking and molecular dynamics simulations of peroxisome proliferator activated receptors interacting with pan agonist sodelglitazar. Protein Pept Lett. 2011;18:1021–1027. doi: 10.2174/092986611796378701. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Diversity are provided here courtesy of Nature Publishing Group

RESOURCES