Abstract
Acute respiratory distress syndrome (ARDS) can be associated with various disorders. Among these, coronavirus infection may cause life-threatening severe acute respiratory syndrome (SARS). In this review, we present animal models and techniques for the study of ARDS, and discuss the roles and possible mechanisms of various chemical factors, including nitric oxide (NO). Our early work revealed that cerebral compression elicits severe hemorrhagic pulmonary edema (PE), leading to central sympathetic activation that results in systemic vasoconstriction. The consequence of systemic vasoconstriction is volume and pressure loading in the pulmonary circulation. Vasodilators, but not oxidant radical scavengers, are effective in the prevention of centrogenic PE. In isolated perfused lung, exogenous and endogenous NO enhances lung injury following air embolism and ischemia/reperfusion. In contrast, NO synthase (NOS) inhibitors reverse such lung injury. Although NO is important in maintaining vasodilator tone, hypoxia-induced pulmonary vasoconstriction is accompanied by an increase instead of a decrease in NO release. In animal and isolated lung studies, endotoxin produces acute lung injury that is associated with increases in cytokines and inducible NOS mRNA expression, suggesting that NO is toxic to the lung in endotoxin shock. Recently, we reported several rare cases that indicate that ARDS in patients with Japanese B encephalitis, lymphangitis with breast cancer and fat embolism is caused by different mechanisms. Our early and recent studies on ARDS and PE may provide information for clinical practice and the understanding of the pathogenesis of SARS.
Key Words: Pulmonary edema, Acute respiratory distress syndrome, Lung injury, Nitric oxide
References
- 1.Chang LY, Huang YC, Lin TY. Fulminant neurogenic pulmonary edema with hand, foot and mouth disease. Lancet. 1998;352:367–368. doi: 10.1016/S0140-6736(98)24031-1. [DOI] [PubMed] [Google Scholar]
- 2.Chen HI. Circulatory changes underlying the Cushing reaction. Natl Sci Counc Mon. 1988;16:1489–1505. [Google Scholar]
- 3.Chen HI. Hemodynamic mechanisms of neurogenic pulmonary edema. Biol Signals. 1995;4:186–192. [PubMed] [Google Scholar]
- 4.Chen HI, Chai CY. Pulmonary edema and hemorrhage as a consequence of systemic vasoconstriction. Am J Physiol. 1974;227:144–151. doi: 10.1152/ajplegacy.1974.227.1.144. [DOI] [PubMed] [Google Scholar]
- 5.Chen HI, Hu CT. Endogenous nitric oxide on arterial hemodynamics: A comparison between normotensive and hypertensive rats. Am J Physiol. 1997;273:H1816–H1823. doi: 10.1152/ajpheart.1997.273.4.H1816. [DOI] [PubMed] [Google Scholar]
- 6.Chen HI, Hu CT, Wu CY, Wang D. Nitric oxide in systemic and pulmonary hypertension. J Biomed Sci. 1997;4:244–248. doi: 10.1007/BF02253424. [DOI] [PubMed] [Google Scholar]
- 7.Chen HI, Huang HS, Yang JG, Wang D. Vasodilator and oxidant scavenger in the neurogenic pulmonary edema induced by cerebral compression. Chin J Physiol. 1992;35:123–131. [PubMed] [Google Scholar]
- 8.Chen HI, Liao TF, Kuo L, Ho ST. Centrogenic pulmonary hemorrhagic edema induced by cerebral compression in rats: Mechanism of volume and pressure loading in the pulmonary circulation. Circ Res. 1980;47:366–373. doi: 10.1161/01.res.47.3.366. [DOI] [PubMed] [Google Scholar]
- 9.Chen HI, Lin JD, Chai CY. Pulmonary hemorrhagic edema induced by cerebral compression: Blood volume shift from the systemic circulation to the lungs. Proc Natl Sci Counc B. 1980;4:381–386. [Google Scholar]
- 10.Chen HI, Lin JD, Liao TF. Participation of regional sympathetic outflows in the centrogenic pulmonary pathology. Am J Physiol. 1981;240:H109–H115. doi: 10.1152/ajpheart.1981.240.1.H109. [DOI] [PubMed] [Google Scholar]
- 11.Chen HI, Shih WJ, Chen TP. A scintiphotographic study of pulmonary edema and hemorrhage induced by cerebral compression and norepinephrine. Chin J Physiol. 1976;22:65–72. [PubMed] [Google Scholar]
- 12.Chen HI, Sun SC, Chai CY. Pulmonary edema and hemorrhage resulting from cerebral compression. Am J Physiol. 1973;224:223–229. doi: 10.1152/ajplegacy.1973.224.2.223. [DOI] [PubMed] [Google Scholar]
- 13.Chen HI, Wang DJ. Systemic and pulmonary hemodynamic responses to intracranial hypertension. Am J Physiol. 1984;247:H715–H721. doi: 10.1152/ajpheart.1984.247.5.H715. [DOI] [PubMed] [Google Scholar]
- 14.Chen HI, Wang YC, Chai CY. The Cushing responses in the systemic and pulmonary circulation: The role of adrenal glands, bronchial circulation and pulmonary innervation. Chin J Physiol. 1987;30:87–101. [PubMed] [Google Scholar]
- 15.Fell C, Rushmer RF. Anatomic distribution of induced changes in blood volume, evaluated by regional weighing. J Appl Physiol. 1961;16:85–88. doi: 10.1152/jappl.1961.16.1.85. [DOI] [PubMed] [Google Scholar]
- 16.Gustafsson LE, Leone AM, Presson MG, Wiklund NP, Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits guinea pigs and humans. Biochem Biophys Res Commun. 1991;181:852–857. doi: 10.1016/0006-291X(91)91268-H. [DOI] [PubMed] [Google Scholar]
- 17.Hsu K, Wang D, Chang ML, Wu CP, Chen HI. Pulmonary edema induced by phorbol myristate acetate is attenuated by compounds that increase intracellular cAMP. Res Exp Med. 1996;196:17–28. doi: 10.1007/s004330050010. [DOI] [PubMed] [Google Scholar]
- 18.Hsu K, Wang D, Wu SY, Shen CY, Chen HI. Ischemia-reperfusion lung injury attenuated by ATP-MgCl2 in rats. J Appl Physiol. 1994;76:545–552. doi: 10.1152/jappl.1994.76.2.545. [DOI] [PubMed] [Google Scholar]
- 19.Hsu YH, Kao SJ, Lee RP, Chen HI. Acute pulmonary oedema: Rare causes and possible mechanisms. Clin Sci. 2003;104:259–264. doi: 10.1042/CS20020166. [DOI] [PubMed] [Google Scholar]
- 20.Hu CT, Chang KC, Wu CY, Chen HI. Acute effects of nitric oxide blockade with L-NAME on arterial hemodynamics in the rat. Br J Pharmacol. 1997;122:1237–1243. doi: 10.1038/sj.bjp.0701496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kao JS, Peng TC, Lee RP, Hsu K, Chen CF, Huang YK, Wang D, Chen HI. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats. J Biomed Sci. 2003;10:58–64. doi: 10.1007/BF02255998. [DOI] [PubMed] [Google Scholar]
- 22.Ksiazek TG, Erman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, and the SARS working group A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
- 23.Lee N, Hui D, Wu A. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348:1984–1992. doi: 10.1056/NEJMoa030685. [DOI] [PubMed] [Google Scholar]
- 24.Lee RP, Wang D, Kao SJ, Chen HI. The lung is the major site that produces nitric oxide to induce acute pulmonary oedema in endotoxin shock. Clin Exp Pharmacol Physiol. 2001;28:315–320. doi: 10.1046/j.1440-1681.2001.03446.x. [DOI] [PubMed] [Google Scholar]
- 25.Lee RP, Wang D, Lin NT, Chen HI. Physiological and chemical indicators for early and late stages of sepsis in conscious rats. J Biomed Sci. 2002;9:613–621. doi: 10.1159/000067290. [DOI] [PubMed] [Google Scholar]
- 26.Lee RP, Wang D, Lin NT, Chou YW, Chen HI. A modified technique for tail cuff pressure measurement in unrestrained conscious rats. J Biomed Sci. 2002;9:424–427. doi: 10.1007/BF02256536. [DOI] [PubMed] [Google Scholar]
- 27.Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–142. [PubMed] [Google Scholar]
- 28.Poutanen SM, Low DE, Henry B. Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003;348:1993–2003. doi: 10.1056/NEJMoa030634. [DOI] [PubMed] [Google Scholar]
- 29.Shen CY, Wang D, Chang ML, Hsu K. Protective effect of mepacrine on hypoxia-reoxygenation-induced acute lung injury in rats. J Appl Physiol. 1995;78:225–231. doi: 10.1152/jappl.1995.78.1.225. [DOI] [PubMed] [Google Scholar]
- 30.Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994;89:2035–2040. doi: 10.1161/01.cir.89.5.2035. [DOI] [PubMed] [Google Scholar]
- 31.Stewart TE, Valenza F, Ribeiro SP, Wener AD, Volgyesi G, Mullen JB, Slutsky AS. Increased nitric oxide in exhaled gas as an early marker of lung inflammation in a model of sepsis. Am J Respir Crit Care Med. 1995;151:713–718. doi: 10.1164/ajrccm.151.3.7533602. [DOI] [PubMed] [Google Scholar]
- 32.Su CF, Hu CT, Chen HI. Effects of intracranial hypertension on steady and pulsatile hemodynamics in dogs. Clin Exp Pharmacol Physiol. 1999;26:898–902. doi: 10.1046/j.1440-1681.1999.03166.x. [DOI] [PubMed] [Google Scholar]
- 33.Szabo C, Mitchell JA, Thiemermann C, Vane JR. Nitric oxide mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol. 1993;108:786–792. doi: 10.1111/j.1476-5381.1993.tb12879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, Lam WK, Seto WH, Yam LY, Cheung TM, Wong PC, Lam B, Ip MS, Chan J, Yuen KY, Lai KN. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348:1975–1983. doi: 10.1056/NEJMoa030666. [DOI] [PubMed] [Google Scholar]
- 35.Wang D, Hsu K, Hwang CP, Chen HI. Measurement of nitric oxide release in the isolated perfused rat lung. Biochem Biophys Res Commun. 1995;208:1016–1020. doi: 10.1006/bbrc.1995.1435. [DOI] [PubMed] [Google Scholar]
- 36.Wang D, Li MH, Hsu K, Shen CY, Chen HI. Air embolism-induced lung injury in isolated rat lungs. J Appl Physiol. 1992;72:1235–1242. doi: 10.1152/jappl.1992.72.4.1235. [DOI] [PubMed] [Google Scholar]
- 37.Wang D, Wei J, Hsu K, Jau JC, Lieu MW, Chao TJ, Chen HI. Effects of nitric oxide synthase inhibitors on systemic hypotension, cytokines and inducible nitric oxide synthase expression and lung injury following endotoxin administration in rats. J Biomed Sci. 1999;6:28–35. doi: 10.1007/BF02256421. [DOI] [PubMed] [Google Scholar]
- 38.Wright CE, Rees DD, Moncada S. Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res. 1992;26:48–57. doi: 10.1093/cvr/26.1.48. [DOI] [PubMed] [Google Scholar]