Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Aug 11;55(22):2323–2328. doi: 10.1007/s11434-010-3008-8

Whole-genome based Archaea phylogeny and taxonomy: A composition vector approach

JianDong Sun 1, Zhao Xu 1, BaiLin Hao 1,2,3,
PMCID: PMC7089326  PMID: 32214732

Abstract

The newly proposed alignment-free and parameter-free composition vector (CVtree) method has been successfully applied to infer phylogenetic relationship of viruses, chloroplasts, bacteria, and fungi from their whole-genome data. In this study we pay special attention to the phylogenetic positions of 56 Archaea genomes among which 7 species have not been listed either in Bergey’s Manual of Systematic Bacteriology or in Taxonomic Outline of Bacteria and Archaea (TOBA). By inspecting the stable monophyletic branchings in CVTrees reconstructed from a total of 861 genomes (56 Archaea plus 797 Bacteria, using 8 Eukarya as outgroups) definite taxonomic assignments were proposed for these not-fully-classified species. Further development of Archaea taxonomy may verify the predicted phylogenetic results of the CVTree approach.

Keywords: Archaea, phylogeny, taxonomy, composition vector, alignment-free, CVTree, 16S rRNA analysis

Footnotes

These authors contributed equally to this work

References

  • 1.Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 1977;74:5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bergey’s Manual Trust. Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer-Verlag, 2001
  • 3.Garrity G M, Lilburn T G, Cole J R, et al. Taxonomic Outline of Bacteria and Archaea (TOBA), Rel.7.7, 6 March 2007, Michigan State University [online]. www.taxonomicoutline.org
  • 4.Konstantinidis K. T., Tiedje K. V. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–6264. doi: 10.1128/JB.187.18.6258-6264.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Qi J., Wang B., Hao B. L. Whole-proteome prokaryote phylogeny without sequence alignment: A K-string composition approach. J Mol Evol. 2004;58:1–11. doi: 10.1007/s00239-003-2493-7. [DOI] [PubMed] [Google Scholar]
  • 6.Hao B. L., Qi J. Prokaryote phylogeny without sequence alignment: From avoidance signature to composition distance. J Bioinf Comput Biol. 2004;2:1–19. doi: 10.1142/S0219720004000442. [DOI] [PubMed] [Google Scholar]
  • 7.Gao L., Qi J., Wei H. B., et al. Molecular phylogeny of coronaviruses including human SARS-CoV. Chinese Sci Bull. 2003;48:1170–1174. doi: 10.1007/BF03183929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Gao L., Qi J. Whole genome molecular phylogeny of large dsDNA viruses using composition vector method. BMC Evol Biol. 2007;7:41. doi: 10.1186/1471-2148-7-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Chu K. H., Qi J., Yu Z. G., et al. Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol Biol Evol. 2004;28:70–76. doi: 10.1093/molbev/msh002. [DOI] [PubMed] [Google Scholar]
  • 10.Gao L., Qi J., Sun J. D., et al. Prokaryote phylogeny meets taxonomy: An exhaustive comparison of composition vector trees with systematic bacteriology. Sci China Ser C-Life Sci. 2007;50:587–599. doi: 10.1007/s11427-007-0084-3. [DOI] [PubMed] [Google Scholar]
  • 11.Wang H., Xu Z., Hao B. L. A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol. 2009;9:195. doi: 10.1186/1471-2148-9-195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.NCBI FTP site: ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
  • 13.Yarza P., Richter M., Peplies J., et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. System Appl Microbiol. 2008;31:241–250. doi: 10.1016/j.syapm.2008.07.001. [DOI] [PubMed] [Google Scholar]
  • 14.Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic tress. Mol Biol Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  • 15.Felsenstein J. PHYLIP (Phylogeny Inference Package) ver. 3.68. Available from http://evolution.genetics.washington.edu/phylip.html
  • 16.Qi J., Luo H., Hao B. L. CVTree: A phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res. 2004;32(WebServerIssue):W45–W47. doi: 10.1093/nar/gkh362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Xu Z, Hao B L. CVTree update: A phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res, 2009, doi:10.1093/ nar/gkp278 [DOI] [PMC free article] [PubMed]
  • 18.Supplementary Material to this paper is available from http://www.itp.ac.cn/~hao/ArchaeaSuppl.pdf
  • 19.Erkel C., Kube M., Reinhardt R., et al. Genome of Rice Cluster I archaea — The key methane producers in the rice rhizospere. Science. 2006;313:370–372. doi: 10.1126/science.1127062. [DOI] [PubMed] [Google Scholar]
  • 20.Margulis L., Schwartz K. V. Five Kingdoms. 3rd ed. New York: W H Freeman; 1998. [Google Scholar]
  • 21.Waters E., Hohn M. J., Ahel I., et al. The genome of nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA. 2003;100:12984–12988. doi: 10.1073/pnas.1735403100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Staley J. T. The bacterial species dilemma and the genomic-phylogenetic species concept. Phil Trans R Soc, B. 2006;361:1899–1909. doi: 10.1098/rstb.2006.1914. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Science Bulletin = Kexue Tongbao are provided here courtesy of Nature Publishing Group

RESOURCES