Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006 Apr 8;68(4):889–917. doi: 10.1007/s11538-005-9005-4

Bayesian modelling of an epidemic of severe acute respiratory syndrome

E S McBryde 1,2,5,, G Gibson 3, A N Pettitt 1, Y Zhang 4, B Zhao 4, D L S McElwain 1
PMCID: PMC7089340  PMID: 16802088

Abstract

This paper analyses data arising from a SARS epidemic in Shanxi province of China involving a total of 354 people infected with SARS-CoV between late February and late May 2003. Using Bayesian inference, we have estimated critical epidemiological determinants. The estimated mean incubation period was 5.3 days (95% CI 4.2–6.8 days), mean time to hospitalisation was 3.5 days (95% CI 2.8–3.6 days), mean time from symptom onset to recovery was 26 days (95% CI 25–27 days) and mean time from symptom onset to death was 21 days (95% CI 16–26 days). The reproduction ratio was estimated to be 4.8 (95% CI 2.2–8.8) in the early part of the epidemic (February and March 2003) reducing to 0.75 (95% CI 0.65–0.85) in the later part of the epidemic (April and May 2003). The infectivity of symptomatic SARS cases in hospital and in the community was estimated. Community SARS cases caused transmission to others at an estimated rate of 0.4 per infective per day during the early part of the epidemic, reducing to 0.2 in the later part of the epidemic. For hospitalised patients, the daily infectivity was approximately 0.15 early in the epidemic, but fell to 0.0006 in the later part of the epidemic. Despite the lower daily infectivity level for hospitalised patients, the long duration of the hospitalisation led to a greater number of transmissions within hospitals compared with the community in the early part of the epidemic, as estimated by this study. This study investigated the individual infectivity profile during the symptomatic period, with an estimated peak infectivity on the ninth symptomatic day.

Keywords: SARS, Bayesian, Modelling, Infectious disease, Viral transmission

References

  1. Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Control. 1974;19(6):716–723. doi: 10.1109/TAC.1974.1100705. [DOI] [Google Scholar]
  2. Anderson R.M., May R.M. Infectious Diseases of Humans: Dynamics and Control. Oxford, New York: Oxford University Press; 1991. [Google Scholar]
  3. Booth C.M., Matukas L.M., Tomlinson G.A., Rachlis A.R., Rose D.B., Dwosh H.A., Walmsley S.L., Mazzulli T., Avendano M., Derkach P., Ephtimios I.E., Kitai I., Mederski B.D., Shadowitz S.B., Gold W.L., Hawryluck L.A., Rea E., Chenkin J.S., Cescon D.W., Poutanen S.M., Detsky A.S. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289(21):2801–2809. doi: 10.1001/jama.289.21.JOC30885. [DOI] [PubMed] [Google Scholar]
  4. Cheng P.K., Wong D.A., Tong L.K., Ip S.M., Lo A.C., Lau C.S., Yeung E.Y., Lim W.W. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363(9422):1699–700. doi: 10.1016/S0140-6736(04)16255-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi B., Pak A. A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths. J. Epidemiol. Community Health. 2003;57:831–835. doi: 10.1136/jech.57.10.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chowell G., Fenimore P.W., Castillo-Garsow M.A., Castillo-Chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism. J. Theor. Biol. 2003;224(1):1–8. doi: 10.1016/S0022-5193(03)00228-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diekmann O., Heesterbeek J. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. New York: Wiley; 2000. [Google Scholar]
  8. Donnelly C., Fisher M., Fraser C., Ghani A., Riley S., Ferguson N., Anderson R. Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect. Dis. 2004;4(11):672–683. doi: 10.1016/S1473-3099(04)01173-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Donnelly C.A., Ghani A.C., Leung G.M., Hedley A.J., Fraser C., Riley S., Abu-Raddad L.J., Ho L.M., Thach T.Q., Chau P., Chan K.P., Lam T.H., Tse L.Y., Tsang T., Liu S.H., Kong J.H., Lau E.M., Ferguson N.M., Anderson R.M. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003;361(9371):1761–1766. doi: 10.1016/S0140-6736(03)13410-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguiere A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  11. Gopalakrishna G., Choo P., Leo Y.S., Tay B.K., Lim Y.T., Khan A.S., Tan C.C. SARS transmission and hospital containment. Emerg. Infect. Dis. 2004;10(3):395–400. doi: 10.3201/eid1003.030650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Guan Y.J., Butt K.M., Wong K.L., Chan K.W., Lim W., Shortridge K.F., Yuen K.Y., Peiris J.S., Poon L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276–278. doi: 10.1126/science.1087139. [DOI] [PubMed] [Google Scholar]
  13. Gumel A.B., Ruan S., Day T., Watmough J., Brauer F., van den Driessche P., Gabrielson D., Bowman C., Alexander M.E., Ardal S., Wu J., Sahai B.M. Modelling strategies for controlling SARS outbreaks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004;271(1554):2223–2232. doi: 10.1098/rspb.2004.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hsieh Y.H., Chen C.W., Hsu S.B. SARS outbreak, Taiwan, 2003. Emerg. Infect. Dis. 2004;10(2):201–206. doi: 10.3201/eid1002.030515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kermack W., McKendrick A. Contributions to the mathematical theory of epidemics: part 1. Proc. R. Soc. Lond. Ser. A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118. [DOI] [Google Scholar]
  16. Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  17. Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G.M., Ahuja A., Yung M.Y., Leung C.B., To K.F., Lui S.F., Szeto C.C., Chung S., Sung J.J. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003;348(20):1986–1994. doi: 10.1056/NEJMoa030685. [DOI] [PubMed] [Google Scholar]
  18. Leung G.M., Chung P.H., Tsang T., Lim W., Chan S.K., Chau P., Donnelly C.A., Ghani A.C., Fraser C., Riley S., Ferguson N.M., Anderson R.M., Law Y.L., Mok T., Ng T., Fu A., Leung P.Y., Peiris J.S., Lam T.H., Hedley A.J. SARS-CoV antibody prevalence in all Hong Kong patient contacts. Emerg. Infect. Dis. 2004;10(9):1653–1656. doi: 10.3201/eid1009.040155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li Y., Yu I., Xu P., Lee J., Wong T., Ooi P., Sleigh A. Predicting super spreading events during the 2003 severe acute respiratory syndrome epidemics in Hong Kong and Singapore. Am. J. Epidemiol. 2004;160(8):719–728. doi: 10.1093/aje/kwh273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lim P.L., Kurup A., Gopalakrishna G., Chan K.P., Wong C.W., Ng L.C., Se-Thoe S.Y., Oon L., Bai X., Stanton L.W., Ruan Y., Miller L.D., Vega V.B., James L., Ooi P.L., Kai C.S., Olsen S.J., Ang B., Leo Y.S. Laboratory-acquired severe acute respiratory syndrome. N. Engl. J. Med. 2004;350(17):1740–1745. doi: 10.1056/NEJMoa032565. [DOI] [PubMed] [Google Scholar]
  21. Lipsitch M., Cohen T., Cooper B., Robins J.M., Ma S., James L., Gopalakrishna G., Chew S.K., Tan C.C., Samore M.H., Fisman D., Murray M. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300(5627):1966–1970. doi: 10.1126/science.1086616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lloyd A.L. Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. Lond. Ser. B. 2001;268:985–993. doi: 10.1098/rspb.2001.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meltzer M. Multiple contact dates and SARS incubation periods. Emerg. Infect. Dis. 2004;10(2):207–209. doi: 10.3201/eid1002.030426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Normille D. Mounting lab accidents raise SARS fears. Science. April 2004;304:659–661. doi: 10.1126/science.304.5671.659. [DOI] [PubMed] [Google Scholar]
  25. Olsen S.J., Chang H.L., Cheung T.Y., Tang A.F., Fisk T.L., Ooi S.P., Kuo H.W., Jiang D.D., Chen K.T., Lando J., Hsu K.H., Chen T.J., Dowell S.F. Transmission of the severe acute respiratory syndrome on aircraft. N. Engl. J. Med. 2003;349(25):2416–2422. doi: 10.1056/NEJMoa031349. [DOI] [PubMed] [Google Scholar]
  26. Orellana C. Laboratory-acquired SARS raises worries on biosafety. Lancet Infect. Dis. 2004;4(2):64. doi: 10.1016/S1473-3099(04)00911-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L., Law K.I., Tang B.S., Hon T.Y., Chan C.S., Chan K.H., Ng J.S., Zheng B.J., Ng W.L., Lai R.W., Guan Y., Yuen K.Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet. 2003a;361(9371):1767–1772. doi: 10.1016/S0140-6736(03)13412-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., Nicholls J., Yee W.K., Yan W.W., Cheung M.T., Cheng V.C., Chan K.H., Tsang D.N., Yung R.W., Ng T.K., Yuen K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003b;361(9366):1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poon L.L., Guan Y., Nicholls J.M., Yuen K.Y., Peiris J.S. The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect. Dis. 2004;4(11):663–671. doi: 10.1016/S1473-3099(04)01172-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poutanen S.M., Low D.E., Henry B., Finkelstein S., Rose D., Green K., Tellier R., Draker R., Adachi D., Ayers M., Chan A.K., Skowronski D.M., Salit I., Simor A.E., Slutsky A.S., Doyle P.W., Krajden M., Petric M., Brunham R.C., McGeer A.J. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 2003;348(20):1995–2005. doi: 10.1056/NEJMoa030634. [DOI] [PubMed] [Google Scholar]
  31. Riley S., Fraser C., Donnelly C.A., Ghani A.C., Abu-Raddad L.J., Hedley A.J., Leung G.M., Ho L.M., Lam T.H., Thach T.Q., Chau P., Chan K.P., Lo S.V., Leung P.Y., Tsang T., Ho W., Lee K.H., Lau E.M., Ferguson N.M., Anderson R.M. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science. 2003;300(5627):1961–1966. doi: 10.1126/science.1086478. [DOI] [PubMed] [Google Scholar]
  32. Teleman M.D., Boudville I.C., Heng B.H., Zhu D., Leo Y.S. Factors associated with transmission of severe acute respiratory syndrome among health-care workers in Singapore. Epidemiol. Infect. 2004;132(5):797–803. doi: 10.1017/S0950268804002766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wallinga J., Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 2004;160(6):509–516. doi: 10.1093/aje/kwh255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang W., Ruan S. Simulating the SARS outbreak in Beijing with limited data. J. Theor. Biol. 2004;227(3):369–379. doi: 10.1016/j.jtbi.2003.11.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Webster R. Wet markets: A continuous source of severe acute respiratory syndrome and influenza? Lancet. 2004;363:234–236. doi: 10.1016/S0140-6736(03)15329-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WHO, 2003a. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (World Wide Web URL: http://www.who.int/csr/sars/country/table2003_09_ 23/en/).
  37. WHO, 2003b. Update 80—Change in travel recommendations for parts of China, situation in Toronto (World Wide Web URL: http://www.who.int/csr/don/2003_06_13/en/).
  38. WHO, 2003c. Update 95-sars: Chronology of a serial killer. Geneva, Switzerland (World Wide Web URL: http://www.who.int/csr/don/2003_07_04/en).
  39. WHO, 2003d. WHO extends its SARS-related travel advice to Beijing and Shanxi province in China and to Toronto, Canada (World Wide Web URL: http://www.who.int /mediacentre/news/notes/2003/np7/en/). [PubMed]
  40. WHO, 2004. Investigation into China's recent SARS outbreak yields important lessons for global public health (World Wide Web URL: http://www.wpro.who.int/sars/docs/update/update_07022004.asp).
  41. Wong T.W., Lee C.K., Tam W., Lau J.T., Yu T.S., Lui S.F., Chan P.K., Li Y., Bresee J.S., Sung J.J., Parashar U.D. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg. Infect. Dis. 2004;10(2):269–276. doi: 10.3201/eid1002.030452. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bulletin of Mathematical Biology are provided here courtesy of Nature Publishing Group

RESOURCES