Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2000;9(2):155–159. doi: 10.1023/A:1008987403484

Expression of a functional mouse-human chimeric anti-CD19 antibody in the milk of transgenic mice

Petra van Kuik-Romeijn 1, Nanda de Groot 1, Erik Hooijberg 2, Herman A de Boer 1
PMCID: PMC7089348  PMID: 10951698

Abstract

Human B cell lymphomas are suitable targets for immunotherapy. Clinical trials with mouse-human chimeric B cell-specific monoclonal antibodies (mAbs) have already shown promising results. However, limitations for their use in clinical trials can be the lack of sufficient amounts and high production costs. Expression of mAbs in the mammary gland of transgenic animals provides an economically advantageous possibility for production of sufficient quantities of a promising antibody for clinical trials and beyond. In this paper, we show the feasibility of this approach, by generating transgenic mice expressing mouse-human chimeric anti-CD19 mAbs in their milk. Mouse anti-CD19 variable (V) region genes were combined with human IgG1 heavy (H) and kappa light (L) chain constant (C) region genes and fused to the bovine β-lactoglobulin (BLG) promoter in two separate expression cassettes. Co-injection resulted in five transgenic lines. In one of these lines completely assembled chimeric mAbs were secreted into the milk, at an approximate level of 0.5mg/ml. These mAbs were able to bind specifically to the CD19 surface antigen on human B cells.

Keywords: BLG promoter, chimeric, expression, milk, monoclonal antibody, mouse-human, transgenic mice

References

  1. Alexander LJ, Hayes G, Bawden W, Stewart AF, Mackinlay AG. Complete nucleotide sequence of the bovine β-lactoglobulin gene. Animal Biotech. 1993;4:1–10. [Google Scholar]
  2. Archibald AL, McClenaghan M. H., Simons JP, Clark AJ. High-level expression of biologically active human α1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci USA. 1990;87:5178–5182. doi: 10.1073/pnas.87.13.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bijvoet AGA, Kroos MA, Pieper FR, Van der Vliet M, de Boer HA, Van der Ploeg AT, Verbeet MP, Reuser AJ. Recombinant human acid α-glucosidase: high-level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Hum Mol Genet. 1998;7:1815–1824. doi: 10.1093/hmg/7.11.1815. [DOI] [PubMed] [Google Scholar]
  4. Bischoff R, Degryse E, Perraud F, Dalemans W, Ali Hadji D, Thépot D, Devinoy E, Houdebine LM, Pavirani A. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Lett. 1992;305:265–268. doi: 10.1016/0014-5793(92)80683-8. [DOI] [PubMed] [Google Scholar]
  5. Castilla J, Pintado B, Sola I, Sanchez-Morgado JM, Enjuanes L. Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nature Biotechnol. 1998;16:349–354. doi: 10.1038/nbt0498-349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hieter PA, Max EE, Seidman JG, Maizel JV, Jr., Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980;22:197–207. doi: 10.1016/0092-8674(80)90168-3. [DOI] [PubMed] [Google Scholar]
  7. Hooijberg E, van den Berk PCM, Sein JJ, Wijdenes J, Hart AAM, de Boer RW, Melief CJM, Hekman A. Enhanced antitumor effects of CD20 over CD19 monoclonal antibodies in a nude mouse xenograft model. Cancer Res. 1995;55:840–846. [PubMed] [Google Scholar]
  8. Hyttinen J, Korhonen V, Hiltunen MO, Myöhänen S, Jänne J. High-level expression of bovine β-lactoglobulin gene in transgenic mice. J Biotechnol. 1998;61:191–198. doi: 10.1016/s0168-1656(98)00032-7. [DOI] [PubMed] [Google Scholar]
  9. Lee SH, de Boer HA. Production of biomedical proteins in the milk of transgenic dairy cows: the state of art. J Contr Release. 1994;29:213–221. [Google Scholar]
  10. Limonta J, Pedraza A, Rodriguez A, Freyre FM, Barral AM, Castro FO, Lleonart R, Gracia CA, Gavilondo JV, de la Fuente J. Production of active anti-CD6 mouse/human chimeric antibodies in the milk of transgenic mice. Immunotechnology. 1995;1:107–113. doi: 10.1016/1380-2933(95)00010-0. [DOI] [PubMed] [Google Scholar]
  11. Link BK, Weiner GJ. Monoclonal antibodies in the treatment of human B-cell malignancies. Leuk Lymphoma. 1998;31:237–249. doi: 10.3109/10428199809059217. [DOI] [PubMed] [Google Scholar]
  12. Liu AY, Robinson RR, Hellström KE, Murray ED, Jr., Chang CP, Hellström I. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA. 1987;84:3439–3443. doi: 10.1073/pnas.84.10.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, Sun L, Ghrayheb J, Khazaeli MB. Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response. Proc Natl Acad Sci USA. 1989;86:4220–4224. doi: 10.1073/pnas.86.11.4220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–2833. doi: 10.1200/JCO.1998.16.8.2825. [DOI] [PubMed] [Google Scholar]
  15. Orlandi R, Güssow DH, Jones PT, Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci USA. 1989;86:3833–3837. doi: 10.1073/pnas.86.10.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prunkard D, Cottingham I, Garner I, Bruce S, Dalrymple M, Lasser G, Bishop P, Foster D. High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nature Biotechnol. 1996;14:867–871. doi: 10.1038/nbt0796-867. [DOI] [PubMed] [Google Scholar]
  17. Reff ME. High level production of recombinant immunoglobulins in mammalian cells. Curr Opin Biotechnol. 1993;4:573–576. doi: 10.1016/0958-1669(93)90079-c. [DOI] [PubMed] [Google Scholar]
  18. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–445. [PubMed] [Google Scholar]
  19. Sola I, Castilla J, Pintado B, Sanchez-Morgado JM, Whitelaw CBA, Clark AJ, Enjuanes L. Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J Virology. 1998;72:3762–3772. doi: 10.1128/jvi.72.5.3762-3772.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi N, Ueda S, Obata M, Nikaido T, Nakai S, Honjo T. Structure of human immunoglobulin gamma genes: implications for evolution of a gene family. Cell. 1982;29:671–679. doi: 10.1016/0092-8674(82)90183-0. [DOI] [PubMed] [Google Scholar]
  21. Wall RJ, Kerr DE, Bondioli KR. Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci. 1997;80:2213–2224. doi: 10.3168/jds.S0022-0302(97)76170-8. [DOI] [PubMed] [Google Scholar]

Articles from Transgenic Research are provided here courtesy of Nature Publishing Group

RESOURCES