Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2008;51(1):27–37. doi: 10.1007/s11427-008-0002-3

ESTs analyses of Lampetra japonica liver and comparation transcriptome with the jawed vertebrates

LiNa Zhu 1, YaLi Dai 2, Fei Ma 1, QingWei Li 1,
PMCID: PMC7089351  PMID: 18176788

Abstract

A cDNA library was constructed from the liver of Lampetra japonica. 10077 ESTs were obtained by random selecting clones for sequencing. The results demonstrated that 8515 ESTs were assembled into 648 consensus sequences, represented 2210 unique transcripts, 47.06% of which were predicted as full length cDNAs. In addition, 1562 ESTs were singlets. Using the BLAST to align the assembled ESTs, we found that 93.9% (2053) transcripts shared similarity to sequences published in GenBank databases. The functional annotations to assembled ESTs showed that the genes, involved in immunology, blood coagulation and metabolism of jawed vertebrates, were highly expressed in the liver of L. japonica. Furthermore, 8 potential novel genes were identified. Further comparing liver transcriptome of L. japonica with Fundulus heteroclitus, Mus musculus, Bos Taurus, and Homo sapiens revealed that the genes of Chitinase and Polysaccharides metabolism were more highly expressed in L. japonica than the others, which implied that they may play an important role in immunity of L. japonica. In addition, using the TargetScan, we marked microRNA target within 3′ UTR of L. japonica liver transcriptome. The data indicated that some microRNA targets were homology with the targets embeded in human cancer genes. The result seems to provide a useful clue to the treatment of human cancer. Therefore, the present work will be an important resource for investigating the functional genomics and proteomics of L. japonica as well as evolution of vertebrates.

Keywords: Lampetra japonica, liver, expressed sequence tag (EST), transcriptome comparison

Footnotes

Supported by the National High-Tech R&D Program (863 Program) (Grant No. 2007AA09Z428), the National Natural Science Foundation of China (Grant Nos. 60305001 and 60575005), the Key Project of Science and Technology of the Educational Ministry of China (Grant No. 206032), and the Science and Technology Project of Dalian, China (Grant No. 2006E11SF068)

References

  • 1.Janvierg P. Palaeontology: Modern look for ancient lamprey. Nature. 2006;443:921–924. doi: 10.1038/443921a. [DOI] [PubMed] [Google Scholar]
  • 2.Zhang K. K., Guo W. Y., Li X. D., et al. Analysis of fatty acids composition in Lampetra japonica muscle. J Fish Sci China (in Chinese) 2000;7(1):116–117. [Google Scholar]
  • 3.Mayer W. E., Uinukool T., Tichy H., et al. Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci. 2002;99(22):14350–14355. doi: 10.1073/pnas.212527499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Gao Q., Feng Y., Wu Y., et al. Expressed sequence tags (ESTs) analysis of the oral gland of Lampetra japonica. Acta Genet Sin (in Chinese) 2005;32(10):1045–1052. [PubMed] [Google Scholar]
  • 5.Hardisty M. W. The skeleton. In: Hardisty M. W., Potter I. C., editors. The Biology of the Lampreys. London: Academic Press; 1981. p. 333. [Google Scholar]
  • 6.Murakami Y., Ogasawara M., Satoh N., et al. Compartments in the lamprey embryonic brain as revealed by regulatory gene expression and the distribution of reticulospinal neurons. Brain Res Bull. 2002;57:271–275. doi: 10.1016/S0361-9230(01)00669-4. [DOI] [PubMed] [Google Scholar]
  • 7.McCauley D. W., Bronner-Fraser M. Importance of SoxE in neural crest development and the evolution of the pharynx. Nature. 2006;441:750–752. doi: 10.1038/nature04691. [DOI] [PubMed] [Google Scholar]
  • 8.Takio Y., Pasqualetti M., Kuraku S., et al. Evolutionary biology: Lamprey Hox genes and the evolution of jaws. Nature. 2004;416:386–387. doi: 10.1038/nature02616. [DOI] [PubMed] [Google Scholar]
  • 9.Savina M. V., Emelyanova L. V., Belyaeva E. A. Bioenergetic parameters of lamprey and frog liver mitochondria during metabolic depression and activity. Comp Biochem Physiol. 2006;145:296–305. doi: 10.1016/j.cbpb.2006.07.011. [DOI] [PubMed] [Google Scholar]
  • 10.Rotchell J. M., Steventon G. B., Bird D. J. Catalytic properties of CYP1A isoforms in the liver of an agnathan (Lampetra flu6iatilis) and two species of teleost. Comp Biochem Physiol. 2000;125:203–214. doi: 10.1016/s0742-8413(99)00105-x. [DOI] [PubMed] [Google Scholar]
  • 11.Gamper N. L., Savina M. V. Reversible metabolic depression in hepatocytes of lamprey (Lampetra flu6iatilis) during pre-spawning: Regulation by substrate availability. Comp Biochem Physiol. 2000;127:147–154. doi: 10.1016/s0305-0491(00)00246-7. [DOI] [PubMed] [Google Scholar]
  • 12.Pancer Z., Amemiya C. T., Ehrhardt G. A., et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature. 2004;430:174–180. doi: 10.1038/nature02740. [DOI] [PubMed] [Google Scholar]
  • 13.Li X. X., Feng Y., Xiao R., et al. The construction of Lampetra japonica salivary gland. J Liaoning Normal Univ (in Chinese) 2004;27(1):73–75. [Google Scholar]
  • 14.Huang X., Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Min X. J., Butler G., Storms R., et al. TargetIdentifier: A webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res. 2005;33:669–672. doi: 10.1093/nar/gki436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035. [DOI] [PubMed] [Google Scholar]
  • 17.Chen Z. Z., Xue C. H., Zhu S., et al. GoPipe: Streamlined gene ontology annotation for batch anonymous sequences with statistics. Biochem Biophys. 2005;32(2):187–191. [Google Scholar]
  • 18.Zdobnov E. M., Apweiler R. InterProScan—An integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17(9):847–848. doi: 10.1093/bioinformatics/17.9.847. [DOI] [PubMed] [Google Scholar]
  • 19.Chen Z. Z., Wang W., Liu J. J., et al. GODiff: Mining functional differentiation between EST-based transcriptomes. BioMed Central Bioinformatics. 2006;7(1):72. doi: 10.1186/1471-2105-7-72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wang F., Zuo M. X. Human and Animal Physiology (in Chinese) Beijing: Higher Education Press; 2001. [Google Scholar]
  • 21.Chen P., Gao W. P. Chitosan health function. Chin J Food Hygiene (in Chinese) 2001;13(3):38–39. [Google Scholar]
  • 22.Long H. Research advances on 10 nonspecific immune molecules of aquatic animals. J Yangtze Univ (in Chinese) 2005;2(11):67–72. [Google Scholar]
  • 23.Good R. A., Finstad J., Litman G. W. The biology of lampreys. II. Immunology. 1972;1:405–432. [Google Scholar]
  • 24.Hagen M., Filosa M. F., Youson J. H. The immune response in adult sea lamprey (Petromyzon marinus L.): The effect of temperature. Comp Biochem Physiol. 1985;1:207–210. doi: 10.1016/0300-9629(85)90727-3. [DOI] [PubMed] [Google Scholar]
  • 25.Perey D. Y., Finstad J., Pollara B., et al. Evolution of the immune response. VI. First and second set skin homograft rejections in primitive fishes. Lab Investig. 1968;1:591–597. [PubMed] [Google Scholar]
  • 26.Srivastava P. K., Menoret A., Basu S. Heat shock proteins come of age: Primitive functions acquire new roles in an adaptive world. Immunity. 1998;8:657–665. doi: 10.1016/S1074-7613(00)80570-1. [DOI] [PubMed] [Google Scholar]
  • 27.Srivastava P. Interaction of heat shock proteins with peptidesand antigen presenting cells: Chaperoning of the innate andadaptive immune responses. Ann Rev Immunol, 2002, (20): 395–425 [DOI] [PubMed]
  • 28.Pontes M., Xu X., Graham D., et al. cDNA sequences of apolipoproteins from lamprey. Biochemistry. 1987;26(6):1611–1617. doi: 10.1021/bi00380a019. [DOI] [PubMed] [Google Scholar]
  • 29.Chen T. G. Dissertation for Doctoral Degree. Beijing: Academy of Military Medical Sciences (in Chinese); 2005. Bioinformatics study on transcriptome of human fetal liver aged 22 weeks of gestation and genome of SARS-CoV(BJ-01) pp. 91–100. [Google Scholar]
  • 30.Urora E. K. Oncomirs—MicroRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269. doi: 10.1038/nrc1840. [DOI] [PubMed] [Google Scholar]
  • 31.Volinia S., Calin G. A., Liu C. G., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci. 2006;103(7):2257–2261. doi: 10.1073/pnas.0510565103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wu S. F., Zhu Y. P., He F. C. Progress in the comparison of transcriptome and proteome. Prog Biochem Biophys (in Chinese) 2005;32(2):99–105. [Google Scholar]
  • 33.Boot R. G., Blommaart E. F. C., Swart E., et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9):6770–6778. doi: 10.1074/jbc.M009886200. [DOI] [PubMed] [Google Scholar]
  • 34.Suzuki M., Morimatsu M., Yamashita T., et al. A novel serum chitinase that is expressed in bovine liver. FEBS Lett. 2001;506(2):127–130. doi: 10.1016/S0014-5793(01)02893-9. [DOI] [PubMed] [Google Scholar]
  • 35.Chen L., Shen Z., Liu Y. F., et al. Cloning of acidic mammalian chitinase gene mutant and its sequence analysis. Med J Chinese PLA (in Chinese) 2006;31(3):231–233. [Google Scholar]
  • 36.Yang W., Gillian E., James M., et al. Human immune responses to infective stage larval-specific chitinase of filarial parasite, Onchocerca volvulus, Ov-CHI-1. Filaria J. 2003;2(1):6–20. doi: 10.1186/1475-2883-2-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Nishimura K., Nishimura S., Seo H., et al. Macrophage activation with multi-porous beads prepared from partially deacetylated chitin. J Biomed Mater Res. 1986;20(9):1359–1372. doi: 10.1002/jbm.820200910. [DOI] [PubMed] [Google Scholar]
  • 38.Xiao H. Immunology and antitumor activities of chitin/chitosan and its derivatives. Marine Sci (in Chinese) 1999;3(3):30–32. [Google Scholar]

Articles from Science in China. Series C, Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES