Abstract
Based upon the simulation of the stochastic process of infection, onset and spreading of each SARS patient, a system dynamic model of SRAS spreading is constructed. Data from Vietnam is taken as an example for Monte Carlo test. The preliminary results indicate that the time-dependent infection rate is the most inportant control factor for SARS spreading. The model can be applied to prediction of the course with fluctuations of the epidemics, if the previous history of the epidemics and the future infection rate under control measures are known.
Keywords: SARS, epidemic model, system dynamics, point process
References
- 1.Anderson R. M., May R. M. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford Univ. Press; 1991. [Google Scholar]
- 2.Wang W. D. Global behavior of an SEIRS epidemic model with time delays. Applied Mathematics Letters. 2002;15:423–428. doi: 10.1016/S0893-9659(01)00153-7. [DOI] [Google Scholar]
- 3.Wang W. D., Ma Z. E. Global dynamics of an epidemic model with time delay. Nonlinear Analysis: Real World Applications. 2002;3:365–373. doi: 10.1016/S1468-1218(01)00034-7. [DOI] [Google Scholar]
- 4.Ma Z. E., Liu J. P., Li J. Stability analysis for differential infectivity epidemic models. Nonlinear Analysis: Real World Applications. 2003;4:841–856. doi: 10.1016/S1468-1218(03)00019-1. [DOI] [Google Scholar]
- 5.Li X. Z., Guper G., Zhu G. T. Threshold and stability results for an age-structured SEIR epidemic model. Computers and Mathematics with Applications. 2001;42:883–907. doi: 10.1016/S0898-1221(01)00206-1. [DOI] [Google Scholar]
- 6.Li J. Q., Ma Z. E. Qualitative analyses of SIS epidemic model with vaccination varying total population and size. Mathematical and Computer Modelling. 2002;35:1235–1243. doi: 10.1016/S0895-7177(02)00082-1. [DOI] [Google Scholar]
- 7.Fang B. X. The global existence and uniqueness of the solution of a kind of ODE SIRS model. Journal of Fudan University (Natural Science) 2001;40(6):640–687. [Google Scholar]
- 8.Zhang X. Y., Weng S. Y., Gao H. Y. An epidemiological model with nonlinear incidence rate and time-lag. Journal of Changchun University. 2000;10(1):40–42. [Google Scholar]
- 9.Zhang S. D., Hao H., Zhang X. H. Dynamic model of epidemics with latent period. Journal of Mathematical Medicine. 2002;15(5):385–386. [Google Scholar]
- 10.Fan A. J., Wang K. F. Analysis on a species mechanics epidemical model within nonlinear incidence rate. Journal of Sichuan Normal University (Natural Science) 2002;25(3):261–263. [Google Scholar]
- 11.Yuan B. Q. The global solutions of nonlinear integral equations on some infection diseases’ mathematics model in banach spaces. Journal of Shangdong Normal University (Natural Science) 1997;12(1):8–11. [Google Scholar]
- 12.Lloyd A. L. Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theoretical Population Biology. 2001;60:59–71. doi: 10.1006/tpbi.2001.1525. [DOI] [PubMed] [Google Scholar]
- 13.Medlock J., Kot M. Spreading disease: integro-differential equations old and new. Mathematical Biosciences. 2003;184(2):201–222. doi: 10.1016/S0025-5564(03)00041-5. [DOI] [PubMed] [Google Scholar]
- 14.D’Onofrio, A., Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Applied Mathematics and Computation, 2003, in press.
- 15.Daley D. J., Gani J. M. Epidemic Modelling: An Introduction. Cambridge: Cambridge University Press; 1999. [Google Scholar]
- 16.Roberts M. G., Saha A. K. The asymptotic behaviour of a logistic epidemic model with stochastic disease transmission. Applied Mathematics Letters. 1999;12:37–41. doi: 10.1016/S0893-9659(98)00123-2. [DOI] [Google Scholar]
- 17.Grasman J. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models. Mathematical Biosciences. 1998;152:13–27. doi: 10.1016/S0025-5564(98)10020-2. [DOI] [PubMed] [Google Scholar]
- 18.Ball F., Neal P. A general model for stochastic SIR epidemics with two levels of mixing. Mathematical Biosciences. 2002;180:73–102. doi: 10.1016/S0025-5564(02)00125-6. [DOI] [PubMed] [Google Scholar]
- 19.O’Neill P. D. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Mathematical Biosciences. 2002;180:103–114. doi: 10.1016/S0025-5564(02)00109-8. [DOI] [PubMed] [Google Scholar]
- 20.Riley S., Fraser C., Donrelly C. A., et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of Public Health Interventions. Science. 2003;300:1961–1966. doi: 10.1126/science.1086478. [DOI] [PubMed] [Google Scholar]
- 21.Lipsitch M., Cohen T., Cooper B., et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300:1966–1970. doi: 10.1126/science.1086616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Dye C., Gay N. Modeling the SARS epidemic. Science. 2003;300:1884–1885. doi: 10.1126/science.1086925. [DOI] [PubMed] [Google Scholar]
- 23.Hu Z. G., Ye C. S. “Infectious disease model” in new technology dissemination and its empirical evidence. Journal of Wuhan University of Technology. 1998;20(2):76–78. [Google Scholar]
- 24.Leung, B., Grenfell, B. T., A spatial stochastic model simulating a scabies epidemic and coyote population dynamics, Ecological Modelling, 2003, in press.
- 25.Shi Y. L., Liu J., Vere-Jones D., et al. Application of mechanical and statistical models to the study of seismicity of synthetic earthquakes and prediction of natural ones. Acta Seismologica Sinica. 1998;11(4):421–430. doi: 10.1007/s11589-998-0087-6. [DOI] [Google Scholar]
- 26.World Health Organization . Communicable disease surveillance and response, severe acute respiratory syndrome (SARS): Status of the outbreak and lessons for the immediate future. Geneva: World Health Organization; 2003. [Google Scholar]