Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;7(3):193–199. doi: 10.1007/s11908-005-0034-9

Avian Influenza

Gary Adam Zeitlin, Melanie Jane Maslow 1
PMCID: PMC7089377  PMID: 15847721

Abstract

The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

Keywords: Influenza, Influenza Virus, Avian Influenza, Conjunctivitis, Avian Influenza Virus

References and Recommended Reading

  • 1.Meltzer ML, Con NJ, Fukuda K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis. 2001;5:651–671. doi: 10.3201/eid0505.990507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Suarez DL. Evolution of avian influenza viruses. Vet Microbiol. 2000;74:15–27. doi: 10.1016/S0378-1135(00)00161-9. [DOI] [PubMed] [Google Scholar]
  • 3.Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science. 2004;304:241–241. doi: 10.1126/science.1102287. [DOI] [PubMed] [Google Scholar]
  • 4.Kurtz J, Manvell RJ, Banks J. Avian influenza virus isolated from a woman with conjunctivitis. Lancet. 1996;348:901–902. doi: 10.1016/S0140-6736(05)64783-6. [DOI] [PubMed] [Google Scholar]
  • 5.Yuen JY, Chan PK, Peiris M, et al. Members of the H5N1 Study Group. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet. 1998;351:467–471. doi: 10.1016/S0140-6736(98)01182-9. [DOI] [PubMed] [Google Scholar]
  • 6.Ludwig S, Stitz L, Planz O, et al. European swine virus as a possible source of the next influenza pandemic? Virology. 1995;212:555–561. doi: 10.1006/viro.1995.1513. [DOI] [PubMed] [Google Scholar]
  • 7.Cauthen AN, Swayne DE, Schultz-Cherry S, et al. Continued circulation in China of highly pathogenic avian influenza virus encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. J Virol. 2000;74:6592–6599. doi: 10.1128/JVI.74.14.6592-6599.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bosman A, Meijer A, Koopmans M. Final analysis of Netherlands avian influenza outbreaks reveals much higher levels of transmission to humans than previously thought. Euro Surveill Wkly. 2005;10:1–1. doi: 10.2807/esw.10.01.02616-en. [DOI] [PubMed] [Google Scholar]
  • 9.Guan ASL, Wang J, Smith GLD, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2003;430:209–213. doi: 10.1038/nature02746. [DOI] [PubMed] [Google Scholar]
  • 10.Claas ECJ, Kawaolka Y, De Jong JC, et al. Infection of children with avian-human reassortant influenza virus from pigs in Europe. Virology. 1994;204:453–457. doi: 10.1006/viro.1994.1553. [DOI] [PubMed] [Google Scholar]
  • 11.Hayden FG, Fritz R, Lobo MC, et al. Local and systemic cytokine responses during experimental human influenza virus A infection. Relation to symptom formation and host defense. J Clin Invest. 1998;101:643–649. doi: 10.1172/JCI1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Peiris JSM, Yu WC, Leung CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004;363:617–619. doi: 10.1016/S0140-6736(04)15595-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cheung CY, Poon LLM, Lau AS, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet. 2002;360:1831–1837. doi: 10.1016/S0140-6736(02)11772-7. [DOI] [PubMed] [Google Scholar]
  • 14.Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002;8:950–954. doi: 10.1038/nm757. [DOI] [PubMed] [Google Scholar]
  • 15.Guan Y, Poon LM, Cheung CY, et al. H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A. 2004;101:8156–8161. doi: 10.1073/pnas.0402443101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293:1840–1842. doi: 10.1126/science.1062882. [DOI] [PubMed] [Google Scholar]
  • 17.Mastrosovich M, Mastrosovich T, Gray T, et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A. 2004;101:4620–4624. doi: 10.1073/pnas.0308001101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ito T, Goto H, Yamamoto E, et al. Generation of a highly pathogenic influenza A virus from an avirulent field isolate by passaging in chickens. J Virol. 2001;79:4439–4443. doi: 10.1128/JVI.75.9.4439-4443.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Chan PKS. Outbreak of avian influenza A (H5N1) in Hong Kong in 1997. Clin Infect Dis. 2002;34:S58–S64. doi: 10.1086/338820. [DOI] [PubMed] [Google Scholar]
  • 20.Kaye D, Pringle CR. Avian influenza viruses and their implications for human health. Clin Infect Dis. 2005;40:108–111. doi: 10.1086/427236. [DOI] [PubMed] [Google Scholar]
  • 21.Apisarnthanarak A, Kitphati R, Thongphubeth K, et al. Atypical avian influenza (H5N1) Emerg Infect Dis. 2004;10:1321–1324. doi: 10.3201/eid1007.040415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Keawcharoen J, Oraveerakul K, Kuiken T, et al. Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis. 2004;10:2189–2191. doi: 10.3201/eid1012.040759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Spackman E, Senne DA, Myers TJ. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–3260. doi: 10.1128/JCM.40.9.3256-3260.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Shan S, Ko L, Collins RA, et al. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Biochem Biophys Res Commun. 2003;302:377–383. doi: 10.1016/S0006-291X(03)00165-7. [DOI] [PubMed] [Google Scholar]
  • 25.Stephenson I, Wood JM, Nicholson KG, et al. Detection of anti-H5 responses in human sera by HI using horse erythrocytes following MF59-adjuvanted influenza A/duck/Singapore/97 vaccine. Virus Res. 2004;103:91–95. doi: 10.1016/j.virusres.2004.02.019. [DOI] [PubMed] [Google Scholar]
  • 26.Hoffmann E, Krauss S, Perez D, et al. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine. 2002;20:3154–3154. doi: 10.1016/S0264-410X(02)00268-2. [DOI] [PubMed] [Google Scholar]
  • 27.Webby RJ, Webster RG. Are we ready for pandemic influenza? Science. 2003;302:1519–1522. doi: 10.1126/science.1090350. [DOI] [PubMed] [Google Scholar]
  • 28.Smolinski MS, Hamburg MA, Lederberg J. Microbial Threats to Health: Emergence, Detection and Response. Washington, DC: Institute of Medicine of the National Academies, The National Academic Press; 2003. [PubMed] [Google Scholar]
  • 29.Capua I, Marangon S. Vaccination for avian influenza in Asia. Vaccine. 2004;22:4137–4138. doi: 10.1016/j.vaccine.2004.04.017. [DOI] [PubMed] [Google Scholar]
  • 30.Normile D. Vaccinating birds may help to curtail virus’s spread. Science. 2004;306:398–399. doi: 10.1126/science.306.5695.398. [DOI] [PubMed] [Google Scholar]
  • 31.Tran TH, Nguyen TL, Nguyen TD, et al. Avian influenza A (H5N1) virus infection in 10 patients in Vietnam. N Engl J Med. 2004;350:1179–1188. doi: 10.1056/NEJMoa040419. [DOI] [PubMed] [Google Scholar]
  • 32.Cheng VSS, Tang BSF, Wu AKL, et al. Medical treatment of viral pneumonia including SARS in the immunocompetent adult. J Infect. 2004;49:262–273. doi: 10.1016/j.jinf.2004.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Leneva IA, Goloubeva O, Fenton RJ, et al. Efficacy of zanamavir against influenza A viruses that possess genes encoding H5N1 internal proteins and are pathogenic in mammals. Antimicrob Agents Chemother. 2001;45:1216–1224. doi: 10.1128/AAC.45.4.1216-1224.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Leneva IA, Roberts N, Govorkova EA, et al. The neuraminidase inhibitor GS1404 (oseltamavir phosphate) is efficacious against A/Hong Kong/156/97 (H5N1) and A/Hong Kong/ 1074/99 (H9N2) influenza viruses. Antiviral Res. 2000;48:101–115. doi: 10.1016/S0166-3542(00)00123-6. [DOI] [PubMed] [Google Scholar]
  • 35.Ge Q, Filip L, Bai A, et al. Inhibition of influenza production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A. 2004;101:8676–8681. doi: 10.1073/pnas.0402486101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Current Infectious Disease Reports are provided here courtesy of Nature Publishing Group

RESOURCES