Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Key words: Plant virus, leader, caulimovirus, luteovirus, frameshift, readthrough, internal initiation
References
- 1.Abastado JP, Miller PF, Jackson BM, Hinnebusch AG. Suppression of ribosomal reinitiation at upstream open reading frames in amino-acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol. 1991;11:486–496. doi: 10.1128/mcb.11.1.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Acland P, Dixon M, Peters G, Dickson C. Subcellular fate of the Int-2 oncoprotein is determined by choice of initiation codon. Nature. 1990;343:662–665. doi: 10.1038/343662a0. [DOI] [PubMed] [Google Scholar]
- 3.Agol VI. The 5′-untranslated region of picornaviral genomes. Adv Virus Res. 1991;40:103–180. doi: 10.1016/S0065-3527(08)60278-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Agranovsky AA, Koonin EV, Boyko VP, Maiss E, Frötschl R, Lunina NA, Atabekov JG. Beet yellows closterovirus: complete genome structure and identification of a leader papainlike thiol protease. Virology. 1994;198:311–324. doi: 10.1006/viro.1994.1034. [DOI] [PubMed] [Google Scholar]
- 5.Ahlquist P, Dasgupta R, Shih DS, Zimmern D, Kaesberg P. Two-step binding of eukaryotic ribosomes to brome mosaic virus RNA 3. Nature. 1979;281:277–282. doi: 10.1038/281277a0. [DOI] [PubMed] [Google Scholar]
- 6.Ainley WM, Key JL. Development of a heat shock inducible expression cassette for plants: characterization of parameters for its use in transient expression assays. Plant Mol Biol. 1990;14:949–967. doi: 10.1007/BF00019392. [DOI] [PubMed] [Google Scholar]
- 7.Altmann M, Blum S, Wilson TMA, Trachsel H. The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene. 1990;91:127–129. doi: 10.1016/0378-1119(90)90173-o. [DOI] [PubMed] [Google Scholar]
- 8.Angenon G, Uotila J, Kurkela SA, Teeri TH, Botterman J, Van Montague M, Depicker A. Expression of dicistronic transcription units in transgenic tobacco. Mol Cell Biol. 1989;9:5676–5684. doi: 10.1128/mcb.9.12.5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Angenon A, Van Montague M, Depicker A. Analysis of the stop codon context in plant nuclear genes. FEBS Lett. 1990;271:144–149. doi: 10.1016/0014-5793(90)80392-v. [DOI] [PubMed] [Google Scholar]
- 10.Apuya NR, Zimmermann JL. Heat shock gene expression is controlled primarily at the translational level in carrot cells and somatic embryos. Plant Cell. 1992;4:657–665. doi: 10.1105/tpc.4.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Atkins JF, Weiss RB, Thompson S, Gesteland RF. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: Programmed reading frame shifts and hops. Annu Rev Genet. 1991;25:201–208. doi: 10.1146/annurev.ge.25.120191.001221. [DOI] [PubMed] [Google Scholar]
- 12.Bahner I, Lamb J, Mayo MA, Hay RT. Expression of the genome of potato leafroll virus: readthrough of the coat protein termination condon in vivo. J Gen Virol. 1990;71:2251–2256. doi: 10.1099/0022-1317-71-10-2251. [DOI] [PubMed] [Google Scholar]
- 13.Bailey-Serres J, Freeling M. Hypoxic stress-induced changes in ribosomes of maize seedling roots. Plant Physiol. 1990;94:1237–1243. doi: 10.1104/pp.94.3.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Baim SB, Sherman F. mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1988;8:1591–1601. doi: 10.1128/mcb.8.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Barciszewski J, Barciszewska M, Suter B, Kubli E. readthrough properties and nucleotide sequence of yellow lupin seeds tRNATyrPlant tRNA suppressors: in vivo. Plant Sci. 1985;40:193–196. [Google Scholar]
- 16.Basso J, Dallaire P, Charest PJ, Devantier Y, Laliberte J-F. Evidence for an internal ribosome entry site within the 5′-untranslated region of turnip mosaic potyvirus RNA. J Gen Virol. 1994;75:3157–3165. doi: 10.1099/0022-1317-75-11-3157. [DOI] [PubMed] [Google Scholar]
- 17.Baughman GA, Howell SH. Cauliflower mosaic virus 35S RNA leader region inhibits translation of downstream genes. Virology. 1988;167:125–135. doi: 10.1016/0042-6822(88)90061-x. [DOI] [PubMed] [Google Scholar]
- 18.Baughman GA, Jacobs JD, Howell SH. Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc Natl Acad Sci USA. 1988;85:733–737. doi: 10.1073/pnas.85.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Beccera SP, Rose JA, Hardy M, Baroudy BM, Anderson CW. Direct mapping of adeno-associated virus capsid protein B and C: a possible AUC initiation codon. Proc Natl Acad Sci USA. 1985;76:7919–7923. doi: 10.1073/pnas.82.23.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Beier H, Barciszewska M, Krupp G, Mitnacht R, Gross HJ. UAG readthrough during TMV RNA translation: Isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plants. EMBO J. 1984;3:351–356. doi: 10.1002/j.1460-2075.1984.tb01810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Beier H, Barciszewska M, Sickinger H-D. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J. 1984;3:1091–1096. doi: 10.1002/j.1460-2075.1984.tb01934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Belcourt MF, Farabaugh PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNA slippage on a 7 nucleotide minimal site. Cell. 1990;62:339–352. doi: 10.1016/0092-8674(90)90371-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Belsham GJ, Lomonossoff GP. The mechanism of translation of cowpea mosaic virus middle component RNA: no evidence for internal initiation from experiments in an animal cell transient expression assay. J Gen Virol. 1991;72:3109–3113. doi: 10.1099/0022-1317-72-12-3109. [DOI] [PubMed] [Google Scholar]
- 24.Beltrán-Peña E, Ortiz-López A, de Jiménez Sánchez E. Synthesis of ribosomal proteins from stored mRNAs early in seed germination. Plant Mol Biol. 1995;28:327–336. doi: 10.1007/BF00020251. [DOI] [PubMed] [Google Scholar]
- 25.Benhar I, Engelberg-Kulka H. Frameshifting of the E. coli trpR gene occurs by the bypassing of a segment of its coding sequence. Cell. 1993;72:121–130. doi: 10.1016/0092-8674(93)90056-v. [DOI] [PubMed] [Google Scholar]
- 26.Benkowski LA, Ravel JM, Browning KS. mRNA binding properties of wheat germ protein synthesis initiation factor 2. Biochem Biophys Res Comm. 1995;214:1033–1039. doi: 10.1006/bbrc.1995.2389. [DOI] [PubMed] [Google Scholar]
- 27.Berlioz C, Darlix J-L. An internal ribosome entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J Virol. 1995;69:2214–2222. doi: 10.1128/jvi.69.4.2214-2222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Berry JO, Carr JP, Klessig DF. mRNAs encoding ribulose-1,5-bisphosphate carboxylase remain bound to polysomes but are not translated in amaranth seedlings transferred to darkness. Proc Natl Acad Sci USA. 1988;85:4190–4194. doi: 10.1073/pnas.85.12.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Berry JO, Breiding DE, Klessig DF. Light-mediated control of translation initiation of ribulose-1,5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell. 1990;2:795–803. doi: 10.1105/tpc.2.8.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, Larsen PR. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature. 1991;353:273–276. doi: 10.1038/353273a0. [DOI] [PubMed] [Google Scholar]
- 31.Bevan M. Binary Agrobacterium vectors for plant transformation. Nucl Acids Res. 1984;12:8711–8720. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Boeck R, Kolakofski D. Positions +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO J. 1994;13:3608–3617. doi: 10.1002/j.1460-2075.1994.tb06668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic inter-play between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol. 1995;251:334–345. doi: 10.1006/jmbi.1995.0438. [DOI] [PubMed] [Google Scholar]
- 34.Bonneville J-M, Sanfaçon H, Fütterer J, Hohn T. Posttranscriptional transactivation in cauliflower mosaic virus. Cell. 1989;59:1135–1143. doi: 10.1016/0092-8674(89)90769-1. [DOI] [PubMed] [Google Scholar]
- 35.Bouzoubaa S, Ziegler V, Beck D, Guilley H, Richards K, Jonard G. Nucleotide sequence of beet necrotic yellow vein virus RNA-2. J Gen Virol. 1986;67:1689–1700. [Google Scholar]
- 36.Boyd L, Thummel CS. Selection of CUG and AUG initiator codons for Drosophila E74A translation depends on downstream sequences. Proc Natl Acad Sci USA. 1993;90:9164–9167. doi: 10.1073/pnas.90.19.9164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Boyer SK, Shotwell MA, Larkins BA. Evidence for the translational control of storage protein gene expression in oat seeds. J Biol Chem. 1992;267:17449–17457. [PubMed] [Google Scholar]
- 38.Bransom KL, Weiland JJ, Tsai C-H, Dreher TW. coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthrough coding regions. Virology. 1995;206:403–412. doi: 10.1016/s0042-6822(95)80056-5. [DOI] [PubMed] [Google Scholar]
- 39.Brault V, Miller WA. Translational frameshifting mediated by a viral sequence in plant cells. Proc Natl Acad Sci USA. 1992;89:2262–2266. doi: 10.1073/pnas.89.6.2262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Brierley I, Rolley NJ, Jenner AJ, Inglis SC. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1991;220:889–902. doi: 10.1016/0022-2836(91)90361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Brown TA, Shrift A. Identification of selenocysteine in the proteins of selenate-grown Vigna radiata. Plant Physiol. 1980;66:758–761. doi: 10.1104/pp.66.4.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Brown CM, Stockwell PA, Trotman CNA, Tate WP. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucl Acids Res. 1990;18:6339–6345. doi: 10.1093/nar/18.21.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Brown CM, Dalphin ME, Stockwell PA, Tate WP. The translational termination signal database. Nucl Acids Res. 1993;21:3119–3123. doi: 10.1093/nar/21.13.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Browning KS, Fletcher L, Ravel JM. Evidence that the requirements for ATP and wheat germ initiation factors 4A and 4F are affected by a region of satellite tobacco necrosis virus RNA that is 3′ to the ribosomal binding site. J Biol Chem. 1988;263:9630–9634. [PubMed] [Google Scholar]
- 45.Buckingham RH. Codon context and protein synthesis-enhancements of the genetic code. Biochimie. 1994;76:351–354. doi: 10.1016/0300-9084(94)90108-2. [DOI] [PubMed] [Google Scholar]
- 46.Bugler B, Amalric F, Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1992;11:573–577. doi: 10.1128/mcb.11.1.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Bulmer M. Coevolution of codon usage and transfer RNA abundance. Nature. 1987;325:728–730. doi: 10.1038/325728a0. [DOI] [PubMed] [Google Scholar]
- 48.Callis J, Fromm M, Walbot V. Expression of mRNA electroporated in plant and animal cells. Nucl Acids Res. 1987;15:5823–5831. doi: 10.1093/nar/15.14.5823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Campbell WH, Gowri G. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol. 1990;92:1–11. doi: 10.1104/pp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Cao JH, Geballe AP. Translational inhibition by a human cytomegalovirus upstream open reading frame despite inefficient utilization of its AUG codon. J Virol. 1995;69:1030–1036. doi: 10.1128/jvi.69.2.1030-1036.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Carneiro VTC, Pelletier G, Small I. Transfer RNA-mediated suppression of stop codons in protoplasts and transgenic plants. Plant Mol Biol. 1993;22:681–690. doi: 10.1007/BF00047408. [DOI] [PubMed] [Google Scholar]
- 52.Carrington JC, Morris TJ. Characterization of cell-free translation products of carnation mottle virus genomic and subgenomic RNAs. Virology. 1985;144:1–10. doi: 10.1016/0042-6822(85)90299-5. [DOI] [PubMed] [Google Scholar]
- 53.Carrington JC, Freed DD. Cap-independent enhancement of translation by a plant potyvirus 5′-untranslated region. J Virol. 1990;64:1590–1597. doi: 10.1128/jvi.64.4.1590-1597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Carroll R, Derse D. Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J Virol. 1993;67:1433–1440. doi: 10.1128/jvi.67.3.1433-1440.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Cavener DR, Ray SC. Eukaryotic start and stop translation sites. Nucl Acids Res. 1991;19:3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Chamorro M, Parkin N, Varmus HE. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci USA. 1992;89:713–717. doi: 10.1073/pnas.89.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 1995;268:415–417. doi: 10.1126/science.7536344. [DOI] [PubMed] [Google Scholar]
- 58.Chen G, Müller M, Potrykus I, Hohn T, Fütterer J. Rice tungro bacilliform virus: transcription and translation in protoplasts. Virology. 1994;204:91–100. doi: 10.1006/viro.1994.1513. [DOI] [PubMed] [Google Scholar]
- 59.Chen GFT, Inouye M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Devel. 1994;8:2641–2652. doi: 10.1101/gad.8.21.2641. [DOI] [PubMed] [Google Scholar]
- 60.Chen X, Chamorro M, Lee SI, Shen LX, Hines JV, Tinoco I, Jr, Varmus HE. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 1995;14:842–852. doi: 10.1002/j.1460-2075.1995.tb07062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Chin L-S, Foster JL, Falk BW. The beet western yellows virus ST9-associated RNA shares structural and nucleotide sequence homology with carmo-like viruses. Virology. 1993;192:473–482. doi: 10.1006/viro.1993.1063. [DOI] [PubMed] [Google Scholar]
- 62.Chiorini JA, Boal TR, Miyamoto S, Safer B. A difference in the rate of ribosomal elongation balances the synthesis of eukaryotic translation initiation factor (eIF)-2 and eIF-2β. J Biol Chem. 1993;268:13748–13755. [PubMed] [Google Scholar]
- 63.Cho HJ, Morikawa H, Murooka Y. Expression pattern of bacterial polycistronic genes in tobacco cells. J Ferment Bioeng. 1995;80:111–117. [Google Scholar]
- 64.Christensen AK, Kahn LE, Bourne CM. Circular polysomes predominate on the rough endoplasmic reticulum of somatropes and mammotropes in the rat anterior pituitary. Am J Anat. 1987;178:1–10. doi: 10.1002/aja.1001780102. [DOI] [PubMed] [Google Scholar]
- 65.Clements JM, Laz TM, Sherman F. Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol Cell Biol. 1988;8:4533–4536. doi: 10.1128/mcb.8.10.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Collins RF, Roberts M, Phoenix DA. Codon usage in Escherichia coli may modulate translation initiation. Biochem Soc Transact. 1995;23:76. doi: 10.1042/bst023076s. [DOI] [PubMed] [Google Scholar]
- 67.Condeelis J. Elongation factor 1-alpha, translation and the cytoskeleton. Trends Biochem Sci. 1995;20:169–170. doi: 10.1016/s0968-0004(00)88998-7. [DOI] [PubMed] [Google Scholar]
- 68.Coutts RHA, Rigden JE, Slabas AR, Lomonossoff GP. The complete nucleotide sequence of tobacco necrosis virus strain D. J Gen Virol. 1991;72:1521–1529. doi: 10.1099/0022-1317-72-7-1521. [DOI] [PubMed] [Google Scholar]
- 69.Craigen WJ, Lee CC, Caskey CT. Recent advances in peptide chain termination. Mol Microbiol. 1990;4:861–865. doi: 10.1111/j.1365-2958.1990.tb00658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Crosby JS, Vayda ME. Stress-induced translational control in potato tubers may be mediated by polysome associated proteins. Plant Cell. 1991;3:1013–1023. doi: 10.1105/tpc.3.9.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Crowley KS, Reinhart GD, Johnson AE. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell. 1993;73:1101–1115. doi: 10.1016/0092-8674(93)90640-c. [DOI] [PubMed] [Google Scholar]
- 72.Curran J, Kolakofsky D. Scanning independent ribosomal initiation of the sendai virus X protein. EMBO J. 1988;7:2869–2874. doi: 10.1002/j.1460-2075.1988.tb03143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Damiani RD, Wessler SR. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators. Proc Natl Acad Sci USA. 1993;90:8244–8248. doi: 10.1073/pnas.90.17.8244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Danthinne X, Seurinck J, Meulewaeter F, Van Montagu M, Cornelissen M. The 3′ untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol Cell Biol. 1993;13:3340–3349. doi: 10.1128/mcb.13.6.3340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Dasgupta R, Ahlquist P, Kaesberg P. Sequence of the 3′ untranslated region of brome mosaic virus coat protein messenger RNA. Virology. 1980;104:339–346. doi: 10.1016/0042-6822(80)90338-4. [DOI] [PubMed] [Google Scholar]
- 76.Dasso MC, Milburn SC, Hershey JWB, Jackson RJ. Selection of the 5′-proximal translation initiation site is influenced by mRNA and eIF-2 concentrations. Eur J Biochem. 1990;187:361–371. doi: 10.1111/j.1432-1033.1990.tb15313.x. [DOI] [PubMed] [Google Scholar]
- 77.Datla RSS, Bekkaoui F, Hammerlindl JK, Pilate G, Dunstan DI, Crosby WL. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 1993;94:139–149. [Google Scholar]
- 78.De Boer HA, Kastelein RA. Biased codon usage. In: Reznikoff W, Gold L, editors. Maximizing Gene Expression. Boston: Butterworths; 1986. pp. 225–285. [Google Scholar]
- 79.Decker CJ, Parker P. Diversity of cytoplasmic functions for the 3′ untranslated region of eukaryotic transcripts. Curr Opin Cell Biol. 1995;7:386–392. doi: 10.1016/0955-0674(95)80094-8. [DOI] [PubMed] [Google Scholar]
- 80.Degnin CR, Schleiss MR, Cao J, Geballe AP. Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. J Virol. 1993;67:5514–5521. doi: 10.1128/jvi.67.9.5514-5521.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.De Melo Neto OP, Standart N, Desa CM. Autoregulation of poly(A)-binding protein synthesis in vitro. Nucl Acids Res. 1995;23:2198–2205. doi: 10.1093/nar/23.12.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Demler SA, De Zoeten GA. The nucleotide sequence and luteovirus-like nature of RNA 1 of an aphid non-transmissable strain of pea enation mosaic virus. J Gen Virol. 1991;72:1819–1834. doi: 10.1099/0022-1317-72-8-1819. [DOI] [PubMed] [Google Scholar]
- 83.De Tapia M, Himmelbach A, Hohn T. Molecular dissection of the cauliflower mosaic virus translation transactivator. EMBO J. 1993;12:3305–3314. doi: 10.1002/j.1460-2075.1993.tb06000.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Dewey RE, Wilson RF, Novitzky WP, Goode JH. The AAPT1 gene of soybean complements a cholinephosphotransferase-deficient mutant of yeast. Plant Cell. 1994;6:1495–1507. doi: 10.1105/tpc.6.10.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Di R, Dinesh-Kumar SP, Miller WA. Translational frameshifting by barley yellow dwarf virus RNA (PAV serotype) in Escherichia coli and in eukaryotic cell-free extracts. Mol Plant-Microbe Interact. 1993;6:444–452. doi: 10.1094/mpmi-6-444. [DOI] [PubMed] [Google Scholar]
- 86.Dinesh-Kumar SP, Brault V, Miller WA. Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology. 1992;187:711–722. doi: 10.1016/0042-6822(92)90474-4. [DOI] [PubMed] [Google Scholar]
- 87.Dinesh-Kumar SP, Miller WA. Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell. 1993;5:679–692. doi: 10.1105/tpc.5.6.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Dixon LK, Hohn T. Initiation of translation ofthe cauliflower mosaic virus genome from a polycistronic mRNA: evidence from deletion mutagensis. EMBO J. 1984;3:2731–2736. doi: 10.1002/j.1460-2075.1984.tb02203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Donahue TF, Cigan AM, Pabich EK, Castilho Valavicius B. Mutations at a Zn(II) finger motif in the yeast eIF-2β gene alter ribosomal start-site selection during the scanning process. Cell. 1988;54:621–632. doi: 10.1016/s0092-8674(88)80006-0. [DOI] [PubMed] [Google Scholar]
- 90.Dorris DR, Erickson FL, Hannig EM. Mutations in GCD11, the structural gene for eIF2-gamma in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 1995;14:2239–2249. doi: 10.1002/j.1460-2075.1995.tb07218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Dowson Day MJ, Ashurst JL, Mathias SF, Watts JW. Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol Biol. 1993;23:97–109. doi: 10.1007/BF00021423. [DOI] [PubMed] [Google Scholar]
- 92.Dubochet J, Morel C, Lebleu B, Herzberg M. Structure of globin mRNA and mRNA-protein particles: use of dark-field electron microscopy. Eur J Biochem. 1973;36:465–472. doi: 10.1111/j.1432-1033.1973.tb02931.x. [DOI] [PubMed] [Google Scholar]
- 93.Entwistle J, Knudson S, Müller M, Cameron-Mills V. Amber codon suppression: the in vivo and in vitro analysis of two C-hordein genes from barley. Plant Mol Biol. 1991;17:1217–1231. doi: 10.1007/BF00028737. [DOI] [PubMed] [Google Scholar]
- 94.Fajardo JE, Shatkin AJ. Translation of bicistronic viral mRNA in transfected cells: Regulation at the level of elongation. Proc Natl Acad Sci USA. 1990;87:328–332. doi: 10.1073/pnas.87.1.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Farabaugh PJ. Alternative readings of the genetic code. Cell. 1993;74:591–596. doi: 10.1016/0092-8674(93)90507-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Felsenstein KM, Goff SP. Mutational analysis of the gag-pol junction of Moloney murine leukemia virus: Requirements for expression of the gag-pol fusion protein. J Virol. 1992;66:6601–6608. doi: 10.1128/jvi.66.11.6601-6608.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Feng Y-X, Copeland TD, Oroszlan S, Rein A, Levin JG. Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. Proc Natl Acad Sci USA. 1990;87:8860–8863. doi: 10.1073/pnas.87.22.8860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Feng Y-X, Yuan H, Rein A, Levin JG. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol. 1992;66:5127–5132. doi: 10.1128/jvi.66.8.5127-5132.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Fennoy SL, Bailey Serres J. Post-translational regulation of gene expression in oxygen-deprived roots of maize. Plant J. 1995;7:287–295. doi: 10.1046/j.1365-313X.1998.00249.x. [DOI] [PubMed] [Google Scholar]
- 100.Filichkin SA, Lister RM, McGrath PF, Young MJ. In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology. 1994;205:290–299. doi: 10.1006/viro.1994.1645. [DOI] [PubMed] [Google Scholar]
- 101.Filipowicz W, Haenni A-L. Binding of ribosomes to 5′-terminal leader sequences of eukaryotic messenger RNAs. Proc Natl Acad Sci USA. 1979;76:3111–3115. doi: 10.1073/pnas.76.7.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Fletcher L, Corbin SD, Browning KS, Ravel JM. The absence of a m7G cap on β-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. J Biol Chem. 1990;32:19582–19587. [PubMed] [Google Scholar]
- 103.Florentz C, Brian JP, Giegé R. Possible functional role of viral tRNA-like structures. FEBS Lett. 1984;176:295–300. [Google Scholar]
- 104.Franklin S, Lin TY, Folk WR. Construction and expression of nonsense suppressor tRNAs which function in plant cells. Plant J. 1992;2:583–588. doi: 10.1046/j.1365-313x.1992.t01-27-00999.x. [DOI] [PubMed] [Google Scholar]
- 105.French R, Jancke M, Ahlquist P. Bacterial genes inserted in an engineered RNA virus. Efficient expression in monocotyledonous plant cells. Science. 1986;231:1294–1297. doi: 10.1126/science.231.4743.1294. [DOI] [PubMed] [Google Scholar]
- 106.Frolova L, Legoff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M, Justesen J, Kirilev L. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 1994;372:701–703. doi: 10.1038/372701a0. [DOI] [PubMed] [Google Scholar]
- 107.Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K. Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Bio/technology. 1993;11:1151–1155. doi: 10.1038/nbt1093-1151. [DOI] [PubMed] [Google Scholar]
- 108.Fütterer J, Gordon K, Bonneville JM, Sanfaçon H, Pisan B, Penswick J, Hohn T. The leading sequence of caulimovirus large RNA can be folded into a large stem-lop structure. Nucl Acids Res. 1988;16:8377–8390. doi: 10.1093/nar/16.17.8377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Fütterer J, Gordon K, Pfeiffer P, Sanfaçon H, Pisan B, Bonneville JM, Hohn T. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader. Virus Genes. 1989;3:45–55. doi: 10.1007/BF00301986. [DOI] [PubMed] [Google Scholar]
- 110.Fütterer J, Bonneville J-M, Gordon K, De Tapia M, Karlsson S, Hohn T: Expression from polycistronic cauliflower mosaic virus pregenomic RNA. In: Posttranscriptional Control of Gene Expression. NATO ASI Series H49, pp. 349–357 (1990).
- 111.Fütterer J, Gordon K, Sanfaçon H, Bonneville JM, Hohn T. Positive and negative control of translation by the leader sequence of cauliflower mosaic virus pregenomic 35S RNA. EMBO J. 1990;9:1697–1707. doi: 10.1002/j.1460-2075.1990.tb08293.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Fütterer J, Hohn T. Translation of a polycistronic mRNA in the presence of the cauliflower mosaic virus transactivator protein. EMBO J. 1991;10:3887–3896. doi: 10.1002/j.1460-2075.1991.tb04958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Fütterer J, Hohn T. Role of an upstream open reading frame in the translation of polycistronic mRNAs in plant cells. Nucl Acids Res. 1992;20:3851–3857. doi: 10.1093/nar/20.15.3851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Fütterer J, Kiss-László Z, Hohn T. Non-linear ribosome migration on cauliflower mosaic virus 35S RNA. Cell. 1993;73:789–802. doi: 10.1016/0092-8674(93)90257-q. [DOI] [PubMed] [Google Scholar]
- 115.Fütterer J, Potrykus I, Valles Brau MP, Dasgupta I, Hull R, Hohn T. Splicing in a plant pararetrovirus. Virology. 1994;198:663–670. doi: 10.1006/viro.1994.1078. [DOI] [PubMed] [Google Scholar]
- 116.Fütterer J, Potrykus I, Bao Y, Li L, Burns TM, Hull R, Hohn T. Position dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J Virol. 1996;70:2999–3010. doi: 10.1128/jvi.70.5.2999-3010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Galili G, Kawata EE, Smith LD, Larkins BA. Role of the 3′-poly(A) sequence in translational regulation of mRNAs in Xenopus laevis oocytes. J Biol Chem. 1988;263:5764–5770. [PubMed] [Google Scholar]
- 118.Gallie DR, Sleat DE, Watts JW, Turner P, Wilson TM. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl Acids Res. 1987;15:3257–3273. doi: 10.1093/nar/15.8.3257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Gallie DR, Sleat DE, Watts JW, Turner P, Wilson TM. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl Acids Res. 1987;15:8693–8711. doi: 10.1093/nar/15.21.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Gallie DR, Lucas WJ, Walbot V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell. 1989;1:301–311. doi: 10.1105/tpc.1.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Gallie DR, Kado CI. A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc Natl Acad Sci USA. 1989;86:129–132. doi: 10.1073/pnas.86.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Gallie DR, Walbot V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Devel. 1990;4:1149–1157. doi: 10.1101/gad.4.7.1149. [DOI] [PubMed] [Google Scholar]
- 123.Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Devel. 1991;5:2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
- 124.Gallie DR, Feder JN, Schimke RT, Walbot V. Posttranscriptional regulation in higher eukaryotes: The role the reporter gene in controlling expression. Mol Gen Genet. 1991;228:258–264. doi: 10.1007/BF00282474. [DOI] [PubMed] [Google Scholar]
- 125.Gallie DR, Feder JN, Schimke RT, Walbot V. Functional analysis of the tobacco mosaic virus tRNA-like structure in cytoplasmic gene regulation. Nucl Acids Res. 1991;19:5031–5036. doi: 10.1093/nar/19.18.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Gallie DR, Walbot V. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucl Acids Res. 1992;20:4631–4638. doi: 10.1093/nar/20.17.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Gallie DR. Posttranscriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol. 1993;44:77–105. [Google Scholar]
- 128.Gallie DR, Kobayashi M. The role of the 3′-untranslated region of non-polyadenylated plant viral RNAs in regulating translational efficiency. Gene. 1994;142:159–165. doi: 10.1016/0378-1119(94)90256-9. [DOI] [PubMed] [Google Scholar]
- 129.Gallie DR, Young TE. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts-analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol. 1994;106:929–939. doi: 10.1104/pp.106.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Gallie DR, Tanguay R. Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem. 1994;269:17166–17173. [PubMed] [Google Scholar]
- 131.Gallie DR, Caldwell C, Pitto L. Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol. 1995;108:1703–1713. doi: 10.1104/pp.108.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Garcia A, Van Duin J, Pleij CWA. Differential response to frameshift signals in eukaryotic and prokaryotic translational systems. Nucl Acids Res. 1993;21:401–406. doi: 10.1093/nar/21.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Geballe AP, Morris DR. Initiation codons within 5′-leaders of mRNAs as regulators of translation. Trend Biochem Sci. 1994;19:159–164. doi: 10.1016/0968-0004(94)90277-1. [DOI] [PubMed] [Google Scholar]
- 134.Godefroy-Colburn T, Ravelonandro M, Pinck L. Cap accessibility correlates with the initiation efficiency of alfalfa mosaic virus RNAs. Eur J Biochem. 1985;147:549–552. doi: 10.1111/j.0014-2956.1985.00549.x. [DOI] [PubMed] [Google Scholar]
- 135.Goldman E, Rosenberg AH, Zubay G, Studier FW. Consecutive low-usage leucine codons block translation only when near the 5′ end of a message in Escherichia coli. J Mol Biol. 1995;245:467–473. doi: 10.1006/jmbi.1994.0038. [DOI] [PubMed] [Google Scholar]
- 136.Goodall GJ, Filipowicz W. The AU-rich sequences in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 1989;58:473–483. doi: 10.1016/0092-8674(89)90428-5. [DOI] [PubMed] [Google Scholar]
- 137.Gordon K, Pfeiffer P, Fütterer J, Hohn T. In vitro expression of cauliflower mosaic virus genes. EMBO J. 1988;7:309–317. doi: 10.1002/j.1460-2075.1988.tb02814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Gordon K, Fütterer J, Hohn T. Efficient initiation of translation at non-AUG triplets in plant cells. Plant J. 1992;2:809–813. [PubMed] [Google Scholar]
- 139.Gowda S, Wu FC, Scholthof HB, Shepherd RJ. Gene VI of figwort mosaic virus (caulimovirus group) functions in posttranscriptional expression of genes on the full-length RNA transcript. Proc Natl Acad Sci USA. 1989;86:9203–9207. doi: 10.1073/pnas.86.23.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Gowda S, Scholthof HB, Wu FC, Shepherd RJ. Requirement of gene VII in cis for the expression of downstream genes on the major transcript of figwort mosaic virus. Virology. 1991;185:867–871. doi: 10.1016/0042-6822(91)90561-o. [DOI] [PubMed] [Google Scholar]
- 141.Gramstat A, Prüfer D, Rohde W. The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a shifty stop codon and a novel mechanism of P-site slippage. Nucl Acids Res. 1994;22:3911–3917. doi: 10.1093/nar/22.19.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Grant CM, Hinnebusch AG. Effect of sequence context at the stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol. 1994;14:606–618. doi: 10.1128/mcb.14.1.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Green PJ. Control of mRNA stability in higher plants. Plant Physiol. 1993;102:1065–1070. doi: 10.1104/pp.102.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Grünert S, Jackson RJ. The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J. 1994;9:3618–3630. doi: 10.1002/j.1460-2075.1994.tb06669.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Gu Z, Harrod R, Rogers EJ, Lovett PS. Antipeptidyl transferasc leader peptides of attenuation-regulated chloramphenicol-resistance genes. Proc Natl Acad Sci USA. 1994;91:5612–5616. doi: 10.1073/pnas.91.12.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Guerineau F, Lucy A, Mullineaux P. Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol Biol. 1992;18:815–818. doi: 10.1007/BF00020027. [DOI] [PubMed] [Google Scholar]
- 147.Gultyaev AP, Van Batenburg FHD, Pleij CWA. The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol. 1995;250:37–51. doi: 10.1006/jmbi.1995.0356. [DOI] [PubMed] [Google Scholar]
- 148.Hamamoto H, Sugiyama Y, Nakagawa N, Hashida E, Matsunaga Y, Takemoto S, Watanabe Y, Okada Y. A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Bio/technology. 1993;11:930–932. doi: 10.1038/nbt0893-930. [DOI] [PubMed] [Google Scholar]
- 149.Hamill D, Davies J, Drawbridge J, Suprenant KA. Polyribosome targeting to microtubules-enrichment of specific mRNAs in a reconstituted microtubule preparation from sea urchin embryos. J Cell Biol. 1994;127:973–984. doi: 10.1083/jcb.127.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Hamilton WDO, Boccara M, Robinson DJ, Baulcombe DC. The complete nucleotide sequence of tobacco rattle virus RNA-1. J Gen Virol. 1987;68:2563–2575. doi: 10.1099/0022-1317-68-10-2563. [DOI] [PubMed] [Google Scholar]
- 151.Hann SR, Sloan-Brown K, Spotts GD. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Devel. 1992;6:1229–1240. doi: 10.1101/gad.6.7.1229. [DOI] [PubMed] [Google Scholar]
- 152.Hann SR. Regulation and function of non-AUG-initiated proto-oncogenes. Biochimie. 1994;76:880–886. doi: 10.1016/0300-9084(94)90190-2. [DOI] [PubMed] [Google Scholar]
- 153.Hann LE, Gehrke L. mRNAs containing the unstructured 5′ leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected Hela cells. J Virol. 1995;69:4986–4993. doi: 10.1128/jvi.69.8.4986-4993.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Harrod AU, Lovett PS. Peptide inhibitors of peptidyltransferase alter the conformation of domains IV and V of large subunit rRNA: a model for nascent peptide control of translation. Proc Natl Acad Sci USA. 1995;92:8650–8654. doi: 10.1073/pnas.92.19.8650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Hatfield DL, Choi IS, Lee BJ, Jung J-E. Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Comm. 1992;184:254–259. doi: 10.1016/0006-291x(92)91186-t. [DOI] [PubMed] [Google Scholar]
- 156.Hatfield DL, Levin JG, Reim A, Oroszlan S. Translational suppression in retroviral gene expression. Adv Vir Res. 1992;41:193–239. doi: 10.1016/S0065-3527(08)60037-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Hatfield DL, Diamond A. UGA: a split personality in the universal genetic code. Trends Genet. 1993;9:69–70. doi: 10.1016/0168-9525(93)90215-4. [DOI] [PubMed] [Google Scholar]
- 158.Hay JM, Jones MC, Blackebrough ML, Dasgupta I, Davies JW, Hull R. An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucl Acids Res. 1991;19:2615–2621. doi: 10.1093/nar/19.10.2615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Hearne PQ, Knorr DA, Hillman BI, Morris TJ. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology. 1990;177:141–151. doi: 10.1016/0042-6822(90)90468-7. [DOI] [PubMed] [Google Scholar]
- 160.Heider J, Baron C, Böck A. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 1992;11:3759–3766. doi: 10.1002/j.1460-2075.1992.tb05461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Hensgens LAM, Fornerod MWJ, Rueb S, Winkler AA, Van der Veen S, Schilperoort RA. Translation controls the expression level of a chimaeric reporter gene. Plant Mol Biol. 1992;20:921–938. doi: 10.1007/BF00027163. [DOI] [PubMed] [Google Scholar]
- 162.Hershey JWB. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
- 163.Herzog E, Guilley H, Manohar SK, Dollet M, Richards K, Fritsch C. Complete nucleotide sequence of peanut clump virus RNA 1 and relationships with other fungus-transmitted rod-shaped viruses. J Gen Virol. 1994;75:3147–3155. doi: 10.1099/0022-1317-75-11-3147. [DOI] [PubMed] [Google Scholar]
- 164.Herzog E, Guilley H, Fritsch C. Translation of the second gene of peanut clump virus RNA 2 occurs by leaky scanning in vitro. Virology. 1995;208:215–225. doi: 10.1006/viro.1995.1145. [DOI] [PubMed] [Google Scholar]
- 165.Hinnebusch AG. Translational control of GCN4-an in vivo barometer of initiation-factor activity. Trends Biochem Sci. 1994;19:409–414. doi: 10.1016/0968-0004(94)90089-2. [DOI] [PubMed] [Google Scholar]
- 166.Hoekema A, Kastelein RA, Vasser M, De Boer HA. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: Experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol. 1987;7:2914–2924. doi: 10.1128/mcb.7.8.2914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Hohn T, Fütterer J. Pararetroviruses and retroviruses: a comparison of expression strategies. Semin Virol. 1991;2:55–70. [Google Scholar]
- 168.Hohn T, Fütterer J. Transcriptional and translational control of gene expression in cauliflower mosaic virus. Curr Opin Genet Devel. 1992;2:90–96. doi: 10.1016/s0959-437x(05)80328-4. [DOI] [PubMed] [Google Scholar]
- 169.Honigman A, Falk H, Mador N, Rosental T, Panet A. Translation frequency of the human T-cell leukemia virus (HTLV-2) gag gene modulates the frequency of ribosomal frameshifting. Virology. 1995;208:312–318. doi: 10.1006/viro.1995.1154. [DOI] [PubMed] [Google Scholar]
- 170.Horvath P, Suganuma A, Inaba M, Pan YB, Gupta KC. Multiple elements in the 5′-untranslated region downregulate c-sis messenger RNA translation. Cell Growth Diff. 1995;6:1103–1110. [PubMed] [Google Scholar]
- 171.Hsu MT, Coca-Prodos M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280:339–340. doi: 10.1038/280339a0. [DOI] [PubMed] [Google Scholar]
- 172.Huang WM, Ao S-Z, Casjens S, Orlandi R, Zeikus R, Weiss R, Winge D, Fang M. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science. 1988;239:1005–1012. doi: 10.1126/science.2830666. [DOI] [PubMed] [Google Scholar]
- 173.Hunter TR, Hunt T, Knowland J, Zimmern D. Messenger RNA for the coat protein of tobacco mosaic virus. Nature. 1976;260:759–764. doi: 10.1038/260759a0. [DOI] [PubMed] [Google Scholar]
- 174.Iida S, Mittelsten-Scheid O, Saul MW, Seipel K, Miyazaki C, Potrykus I. Expression of a downstream gene from a bicistronic transcription unit in transgenic tobacco plants. Gene. 1992;119:199–205. doi: 10.1016/0378-1119(92)90272-q. [DOI] [PubMed] [Google Scholar]
- 175.Iizuka N, Najita L, Franzusoff A, Sarnow P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol. 1994;14:7322–7330. doi: 10.1128/mcb.14.11.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Ingelbrecht ILW, Herman LMF, Dekeyser RA, Van Montague MC, Depicker AG. Different 3′ end regions strongly influence the level of gene expression inplant cells. Plant Cell. 1989;1:671–680. doi: 10.1105/tpc.1.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Ivanov IG, Alexandrova RA, Dragulev BP, Abouhaidar MG. A second putative mRNA binding site on the Escherichia coli ribosome. Gene. 1995;160:75–79. doi: 10.1016/0378-1119(95)00134-r. [DOI] [PubMed] [Google Scholar]
- 178.Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Jacks T, Power MD, Masiarz ER, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
- 180.Jackson RJ, Standart N. Do the poly(A) tail and 3′ untranslated region control mRNA translation? Cell. 1990;62:15–24. doi: 10.1016/0092-8674(90)90235-7. [DOI] [PubMed] [Google Scholar]
- 181.Jang SK, Pestova TV, Hellen CUT, Witherell GW, Wimmer E. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosome entry site. Enzyme. 1990;44:292–309. doi: 10.1159/000468766. [DOI] [PubMed] [Google Scholar]
- 182.Jiang B, Monroe SS, Koonin EV, Stine SE, Glass RI. RNA sequence of astrovirus: distinctive genomic organization and putative retrovirus-like ribosomal frameshifting signal that directs viral replicase synthesis. Proc Natl Acad Sci USA. 1993;90:10539–10543. doi: 10.1073/pnas.90.22.10539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Jobling SA, Gehrke L. Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature. 1987;325:622–625. doi: 10.1038/325622a0. [DOI] [PubMed] [Google Scholar]
- 184.Jobling SA, Cuthbert CM, Rogers SG, Fraley RT, Gehrke L. In vitro transcription and translation efficiency of chimeric SP6 messenger RNAs devoid of 5′ vector nucleotides. Nucl Acids Res. 1988;16:4483–4498. doi: 10.1093/nar/16.10.4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Johansson HE, Belsham GJ, Sproat BS, Hentze MW. Target-specific arrest of mRNA translation by antisense 2′-O-alkyloligoribonucleotides. Nucl Acids Res. 1994;22:4591–4598. doi: 10.1093/nar/22.22.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res. 1987;16:6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Joshi CP, Nguyen HT. 5′ untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins. Nucl Acids Res. 1995;23:541–549. doi: 10.1093/nar/23.4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Kaempffer R, Van Emmelo J, Fiers W. Specific binding of eukaryotic initiation factor 2 to stallite tobacco necrosis virus RNA at a 5′-terminal sequence comprising the ribosome binding site. Proc Natl Acad Sci USA. 1981;78:1542–1546. doi: 10.1073/pnas.78.3.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Kaminski A, Hunt SL, Gibbs CL, Jackson RJ. Internal initiation of mRNA translation in eukaryotes. Genet Engin. 1994;16:115–155. [PubMed] [Google Scholar]
- 190.Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski Dawson WO. Complete sequence of the citrus tristeza virus RNA genome. Virology. 1995;208:511–520. doi: 10.1006/viro.1995.1182. [DOI] [PubMed] [Google Scholar]
- 191.Karpova OV, Mavrodieva VA, Tomashevskaya OL, Rodionova NP, Atabekov JG. The 3′-untranslated region of brome mosaic virus RNA does not enhance translation of capped mRNAs in vitro. FEBS Lett. 1995;360:281–285. doi: 10.1016/0014-5793(95)00103-g. [DOI] [PubMed] [Google Scholar]
- 192.Kato T, Shirano Y, Kawazu T, Tada Y, Itoh E, Shibata D. A modified β-glucuronidase gene: Sensitive detection of plant promoter activities in suspension-cultured cells of tobacco and rice. Plant Mol Biol Rep. 1991;9:333–339. [Google Scholar]
- 193.Kim J-K, Gamble Klein P, Mullet JE. Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem. 1991;266:14931–14938. [PubMed] [Google Scholar]
- 194.Kim J-K, Hollingsworth MJ. Localization of in vivo ribosome pause sites. Anal Biochem. 1992;206:183–188. doi: 10.1016/s0003-2697(05)80031-4. [DOI] [PubMed] [Google Scholar]
- 195.Kim KH, Lommel SA. Identification and analysis of the site of −1 frameshifting in red clover necrotic mosaic virus. Virology. 1994;200:574–582. doi: 10.1006/viro.1994.1220. [DOI] [PubMed] [Google Scholar]
- 196.Kiss-László Z, Blanc S, Hohn T. Splicing of cauliflower mosaic virus is essential for viral infectivity. EMBO J. 1995;14:3552–3562. doi: 10.1002/j.1460-2075.1995.tb07361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Konarska M, Filipowiez W, Domdey H, Gross HJ. Binding of ribosomes to linear and circular forms of the 5′-terminan leader fragment of tobacco mosaic virus. RNA Eur J Biochem. 1981;114:221–227. doi: 10.1111/j.1432-1033.1981.tb05139.x. [DOI] [PubMed] [Google Scholar]
- 198.Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- 199.Kozak M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA. 1986;83:2850–2854. doi: 10.1073/pnas.83.9.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eukaryotic ribosomes. Mol Cell Biol. 1987;7:3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Kozak M. Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol. 1988;8:2737–2744. doi: 10.1128/mcb.8.7.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Kozak M. The scanning model for translation: an update. J Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Kozak M. Context effects and inefficient initiation at non-AUG codons in eukaryotic cell free translation systems. Mol Cell Biol. 1989;9:5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Mol Cell Biol. 1989;9:5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 205.Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci USA. 1990;87:8301–8305. doi: 10.1073/pnas.87.21.8301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Kozak M. Effects of long 5′ leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Exp. 1991;1:117–125. [PMC free article] [PubMed] [Google Scholar]
- 207.Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991;266:19867–19870. [PubMed] [Google Scholar]
- 208.Kozak M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol. 1992;21:385–402. doi: 10.3109/10409239209082567. [DOI] [PubMed] [Google Scholar]
- 209.Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
- 210.Kozak M. Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie. 1994;76:815–821. doi: 10.1016/0300-9084(94)90182-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Kozak M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci USA. 1995;92:2662–2666. doi: 10.1073/pnas.92.7.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 212.Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola S. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology. 1993;11:194–200. [Google Scholar]
- 213.Kudlicki W, Kitaoka Y, Odom OW, Kramer G, Hardesty B. Elongation and folding of nascent ricin chains as peptidyl-tRNA on ribosomes-the effect of amino acid deletions on these processes. J Mol Biol. 1995;252:203–212. doi: 10.1006/jmbi.1995.0488. [DOI] [PubMed] [Google Scholar]
- 214.Kujawa AB, Drugeon G, Hulanicka D, Haenni A-L. Structural requirements for efficient translational frameshifting in the synthesis of the putative viral RNA-dependent RNA polymerase of potato leafroll virus. Nucl Acids Res. 1993;21:2165–2171. doi: 10.1093/nar/21.9.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Ladhoff AM, Uerlings I, Rosenthal S. Electron microscopic evidence of circular molecules of 9-S globin mRNA from rabbit reticulocytes. Mol Biol Rep. 1981;7:101–106. doi: 10.1007/BF00778739. [DOI] [PubMed] [Google Scholar]
- 216.Lahser FC, Marsh LE, Hall TC. Contributions of the brome mosaic virus RNA-3,3′-nontranslated region to replication and translation. J Virol. 1993;67:3295–3303. doi: 10.1128/jvi.67.6.3295-3303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Leathers V, Tanguay R, Kobayashi M, Gallie DR. A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993;13:5331–5347. doi: 10.1128/mcb.13.9.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Levis C, Astier-Manifacier S. The 5′ untranslated region of PVY RNA, even located in internal position, enables initiation of translation. Virus Genes. 1993;7:367–379. doi: 10.1007/BF01703392. [DOI] [PubMed] [Google Scholar]
- 219.Li G, Rice CM. The signal for translational readthrough of a UGA codon in sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol. 1993;67:5062–5067. doi: 10.1128/jvi.67.8.5062-5067.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 220.Li YZ, Ma HM, Zhang JI, Wang ZY, Hong MM. Effects of the first intron of rice waxy gene on the expression of foreign genes in rice and tobacco protoplasts. Plant Sci. 1995;108:181–190. [Google Scholar]
- 221.Liebhaber SA, Cash F, Eshleman SS. Translation inhibition by an mRNA coding region secondary structure is determined by its proximity to the AUG initiation codon. J Mol Biol. 1992;226:609–621. doi: 10.1016/0022-2836(92)90619-u. [DOI] [PubMed] [Google Scholar]
- 222.Lim VI. Analysis of action of the wobble adenine on codon reading within the ribosome. J Mol Biol. 1995;252:277–282. doi: 10.1006/jmbi.1995.0494. [DOI] [PubMed] [Google Scholar]
- 223.Liu C-N, Rubinstein I. Transcriptional characterization of an α-zein gene cluster in maize. Plant Mol Biol. 1993;22:323–336. doi: 10.1007/BF00014939. [DOI] [PubMed] [Google Scholar]
- 224.Lodish HF, Rose JK. Relative importance of 7-methylguanosine in ribosome binding and translation of VSV mRNA in wheat germ and reticulocyte cell-free systems. J Biol Chem. 1977;252:1181–1188. [PubMed] [Google Scholar]
- 225.Lohmer S, Maddaloni M, Motto M, Salamini F, Thompson RD. Translation of the mRNA of the maize transcriptional activator opaque-2 is inhibited by upstream open reading frames present in the leader sequence. Plant Cell. 1993;5:65–73. doi: 10.1105/tpc.5.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Lovett PS. Nascent peptide regulation of translation. J Bact. 1994;176:6415–6417. doi: 10.1128/jb.176.21.6415-6417.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA. Selection of AUG codons differs in plants and animals. EMBO J. 1987;6:43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Luukkonen BGM, Tan W, Schwartz S. Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by the intercistronic distance. J Virol. 1995;69:4086–4094. doi: 10.1128/jvi.69.7.4086-4094.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.Mac Farlane SA, Taylor SC, King DI, Hughes G, Davies JW. Pea early browning virus RNA1 encodes four polypeptides including a putative zinc-finger protein. Nucl Acids Res. 1989;17:2245–2260. doi: 10.1093/nar/17.6.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Makinen K, Naess V, Tamm T, Truve E, Aaspollu A, Saarma M. The putative replicase of the cocksfoot mottle sobemovirus is translated as a part of the polyprotein by—1 ribosomal frameshift. Virology. 1995;207:566–571. doi: 10.1006/viro.1995.1118. [DOI] [PubMed] [Google Scholar]
- 231.Malkin LI, Rich A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol. 1967;26:329–346. doi: 10.1016/0022-2836(67)90301-4. [DOI] [PubMed] [Google Scholar]
- 232.Maquat LE. When cells stop making sense: Effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995;1:453–465. [PMC free article] [PubMed] [Google Scholar]
- 233.Mayfield SP, Yohn CB, Cohen A, Danon A. Regulation of chloroplast gene expression. Annu Rev Plant Physiol Plant Mol Biol. 1995;46:147–166. [Google Scholar]
- 234.Mazier M, Levis C, Chaybani R, Astier-Manifacier S, Tourneur J, Robaglia C. Enhancement of translational activity mediated by potyviral 5′-untranslated sequence in vivo but not in vitro. C R Acad Sci Ser III. 1994;317:1065–1072. [Google Scholar]
- 235.McCarthy JEG, Kollmus H. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci. 1995;20:191–197. doi: 10.1016/s0968-0004(00)89006-4. [DOI] [PubMed] [Google Scholar]
- 236.McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA. 1995;92:5431–5435. doi: 10.1073/pnas.92.12.5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Mehdi H, Ono E, Gupta KC. Initiation of translation at CUG, GUG and ACG codons in mammalian cells. Gene. 1990;91:173–178. doi: 10.1016/0378-1119(90)90085-6. [DOI] [PubMed] [Google Scholar]
- 238.Merrick WC. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992;56:291–315. doi: 10.1128/mr.56.2.291-315.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Merrick WC. Eukaryotic protein synthesis—an in vitro analysis. Biochimie. 1994;76:822–830. doi: 10.1016/0300-9084(94)90183-x. [DOI] [PubMed] [Google Scholar]
- 240.Meulewater F, Cornelissen M, Van Emmelo J. Subgenomic RNAs mediate expression of cistrons located internally on the genomic RNA of tobacco necrosis virus strain A. J Virol. 1992;66:6419–6428. doi: 10.1128/jvi.66.11.6419-6428.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Michelet B, Lukaszewicz M, Dupriez V, Boutry M. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of a translational regulation. Plant Cell. 1994;6:1375–1389. doi: 10.1105/tpc.6.10.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Miller PF, Hinnebusch AG. Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control. Genes Devel. 1989;3:1217–1225. doi: 10.1101/gad.3.8.1217. [DOI] [PubMed] [Google Scholar]
- 243.Miller WA, Dinesh-Kumar SP, Paul CP. Luteovirus gene expression. Crit Rev Plant Sci. 1995;14:179–211. [Google Scholar]
- 244.Mirkov TE, Mathews DM, Du Plessis DH, Dodds JA. Nucleotide sequence and translation of satellite tobacco mosaic virus RNA. Virology. 1989;170:139–146. doi: 10.1016/0042-6822(89)90361-9. [DOI] [PubMed] [Google Scholar]
- 245.Moffat JG, Tate WP, Lovett PS. The leader peptides of attenuation-regulated chloramphenicol resistance genes inhibit translation termination. J Bact. 1994;176:7115–7117. doi: 10.1128/jb.176.22.7115-7117.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Mohan BR, Dinesh-Kumar SP, Miller WA. Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology. 1995;212:186–195. doi: 10.1006/viro.1995.1467. [DOI] [PubMed] [Google Scholar]
- 247.Morch MD, Boyer JC, Haenni AL. Overlapping open reading frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA. Nucl Acids Res. 1988;16:6157–6173. doi: 10.1093/nar/16.13.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Morelli JK, Shewmaker CK, Vayda ME. Biphasic stimulation of translational activity correlates with induction of translation elongation factor 1 subunit alpha upon wounding in potato tubers. Plant Physiol. 1994;106:897–903. doi: 10.1104/pp.106.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Mottagui-Tabar S, Bjornsson A, Issaksson LA. The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J. 1994;13:249–257. doi: 10.1002/j.1460-2075.1994.tb06255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Munroe D, Jacobson A. Tales of poly(A): a review. Gene. 1990;91:151–158. doi: 10.1016/0378-1119(90)90082-3. [DOI] [PubMed] [Google Scholar]
- 251.Munroe D, Jacobson A. mRNA poly(A) tail, a 3′ enhancer of translation initiation. Mol Cell Biol. 1990;10:3441–3455. doi: 10.1128/mcb.10.7.3441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Murray EE, Lotzer J, Eberle M. Codon usage in plant genes. Nucl Acids Res. 1989;17:477–493. doi: 10.1093/nar/17.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 253.Murray EE, Rocheleau T, Eberle M, Stock C, Sekar V, Adang M. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol. 1991;16:1035–1050. doi: 10.1007/BF00016075. [DOI] [PubMed] [Google Scholar]
- 254.Nelson EM, Winkler MM. Regulation of mRNA entry into polysomes: parameters affect polysome size and the fraction of mRNA in polysomes. J Biol Chem. 1987;262:11501–11506. [PubMed] [Google Scholar]
- 255.Nicolaisen M, Johansen E, Poulsen GB, Borkhardt B. The 5′ untranslated region of pea seedborne mosaic potyvirus RNA as a translational enhancer in pea and tobacco protoplasts. FEBS Lett. 1992;303:169–172. doi: 10.1016/0014-5793(92)80511-e. [DOI] [PubMed] [Google Scholar]
- 256.Nover L, Scharf K-D, Neumann D. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol. 1989;9:1298–1308. doi: 10.1128/mcb.9.3.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257.Oh S-K, Scott MP, Sarnow P. Homeotic gene antennapedia mRNA contains 5′-noncoding sequences that confer translation initiation by internal ribosome binding. Genes Devel. 1992;6:1643–1653. doi: 10.1101/gad.6.9.1643. [DOI] [PubMed] [Google Scholar]
- 258.Ohlmann T, Rau M, Morley SJ, Pain VM. Proteolytic cleavage of initiation factor eIF-4-Gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs. Nucl Acids Res. 1995;23:334–340. doi: 10.1093/nar/23.3.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.Oliveira CC, McCarthy JEG. The relationship between eukaryotic translation and mRNA stability—a short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae. J Biol Chem. 1995;270:8936–8943. doi: 10.1074/jbc.270.15.8936. [DOI] [PubMed] [Google Scholar]
- 260.Pain VM. Translational control during amino acid starvation. Biochimie. 1994;76:718–728. doi: 10.1016/0300-9084(94)90076-0. [DOI] [PubMed] [Google Scholar]
- 261.Pande S, Vimaladithan A, Zhao H, Farabaugh PJ. Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacy-tRNA. Mol Cell Biol. 1995;15:298–304. doi: 10.1128/mcb.15.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262.Peabody DD. Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem. 1989;264:5031–5035. [PubMed] [Google Scholar]
- 263.Pease RJ, Leiper RJ, Harrison GB, Scott J. Studies on the translocation of the amino terminus of apolipoprotein B into the endoplasmic reticulum. J Biol Chem. 1995;270:7261–7271. doi: 10.1074/jbc.270.13.7261. [DOI] [PubMed] [Google Scholar]
- 264.Pelham HRB. Leaky UAG termination codon in tobacco virus RNA. Nature. 1978;272:469–471. doi: 10.1038/272469a0. [DOI] [PubMed] [Google Scholar]
- 265.Pelham HRB. Translation of tobacco rattle virus RNAs in vitro: four proteins from three RNAs. Virology. 1979;97:256–265. doi: 10.1016/0042-6822(79)90337-4. [DOI] [PubMed] [Google Scholar]
- 266.Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
- 267.Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA. 1991;88:3324–3328. doi: 10.1073/pnas.88.8.3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Pinck M, Fritsch C, Ravelonandro M, Thivent C, Pinck L. Binding of ribosomes to the 5′ leader sequence (N=258) of RNA 3 from alfalfa mosaic virus. Nucl Acids Res. 1981;9:1087–1100. doi: 10.1093/nar/9.5.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 269.Pitto L, Gallie DR, Walbot V. The role of the leader sequence during thermal repression of translation in maize, tobacco and carrot protoplasts. Plant Physiol. 1992;100:1827–1833. doi: 10.1104/pp.100.4.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 270.Pooggin MM, Skryabin KG. The 5′-untranslated leader sequence of potato virus X RNA enhaces the expression of a heterologous gene in vivo. Mol Gen Genet. 1992;234:329–331. doi: 10.1007/BF00283854. [DOI] [PubMed] [Google Scholar]
- 271.Poole ES, Brown CM, Tate WR: The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14: 151–158. [DOI] [PMC free article] [PubMed]
- 272.Potapov AP, Trianaalonso FJ, Nierhaus KH. Ribosomal decoding processes at codons in the A or P sites depend differently on 2′-OH groups. J Biol Chem. 1995;270:17680–17684. doi: 10.1074/jbc.270.30.17680. [DOI] [PubMed] [Google Scholar]
- 273.Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzin P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci USA. 1989;86:1836–1840. doi: 10.1073/pnas.86.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Prüfer D, Tacke E, Schmitz J, Kull B, Kaufmann A, Rohde W. Ribosomal frameshifting in plants: A novel signal directs the −1 frameshift in the synthesis of the putative replicase of potato leafroll luteovirus. EMBO J. 1992;11:1111–1117. doi: 10.1002/j.1460-2075.1992.tb05151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Putterill JJ, Gardner RC. Initiation of translation of the β-glucuronidase reporter gene at internal AUG codons in plant cells. Plant Sci. 1989;62:199–205. [Google Scholar]
- 276.Quaedvlieg N, Dockx J, Rook F, Weisbeek P, Smeekens S. The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1. Plant Cell. 1995;7:117–129. doi: 10.1105/tpc.7.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277.Reinbothe S, Reinbothe C, Parthier B. Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J. 1993;4:459–467. [Google Scholar]
- 278.Rhoads RE. Cap recognition and the entry of mRNA into the protein synthesis cycle. Trends Biochem Sci. 1988;13:52–56. doi: 10.1016/0968-0004(88)90028-x. [DOI] [PubMed] [Google Scholar]
- 279.Rhoads RE. Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem. 1993;268:3017–3020. [PubMed] [Google Scholar]
- 280.Riechmann JL, Lain S, Garcia JA. Identification of the initiation codon of plum pox potyvirus genomic RNA. Virology. 1991;185:544–552. doi: 10.1016/0042-6822(91)90524-f. [DOI] [PubMed] [Google Scholar]
- 281.Riis B, Rattan SIS, Clark BFC, Merrick WC. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990;15:420–424. doi: 10.1016/0968-0004(90)90279-k. [DOI] [PubMed] [Google Scholar]
- 282.Rochaix J-D. Post-transcriptional steps in the expression of chloroplast genes. Annu Rev Cell Biol. 1992;8:1–28. doi: 10.1146/annurev.cb.08.110192.000245. [DOI] [PubMed] [Google Scholar]
- 283.Rochon DM, Johnston JC. Infectious transcripts from cloned cucumber necrosis virus cDNA: evidence for a bifunctional subgenomic RNA. Virology. 1991;181:656–665. doi: 10.1016/0042-6822(91)90899-m. [DOI] [PubMed] [Google Scholar]
- 284.Rogers SG, Fraley RT, Horsch RB, Levine AD, Flick JS, Brand LA, Fink CL, Mozer T, O'Connel K, Sanders PR. Evidence for ribosome scanning during translation initiation of mRNAs in transformed plant cells. Plant Mol Biol Rep. 1985;3:111–116. [Google Scholar]
- 285.Rohde W, Gramstat A, Schmitz J, Tacke E, Prüfer D. Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. J Gen Virol. 1994;75:2141–2149. doi: 10.1099/0022-1317-75-9-2141. [DOI] [PubMed] [Google Scholar]
- 286.Rothnie HM, Chapdelaine Y, Hohn T. Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res. 1994;44:1–67. doi: 10.1016/s0065-3527(08)60327-9. [DOI] [PubMed] [Google Scholar]
- 287.Ryabov EV, Generozov EV, Kendall TL, Lommel SA, Zavriev SK. Nucleotide sequence of carnation ringspot dianthovirus RNA-1. J Gen Virol. 1994;75:243–247. doi: 10.1099/0022-1317-75-1-243. [DOI] [PubMed] [Google Scholar]
- 288.Ryabova LA, Torgashov AF, Kurnasosv OV, Bubunenko MG, Spirin AS. The 3′-terminal untranslated region of alfalfa mosaic virus RNA 4 facilitates the RNA entry into translation in a cell-free system. FEBS Lett. 1993;326:264–266. doi: 10.1016/0014-5793(93)81804-9. [DOI] [PubMed] [Google Scholar]
- 289.Ryazanov AG, Rudkin BB, Spirin AS. Regulation of protein synthesis at the elongation stage. FEBS Lett. 1991;285:170–175. doi: 10.1016/0014-5793(91)80798-8. [DOI] [PubMed] [Google Scholar]
- 290.Sachs AB, Davies RW. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Celol. 1989;58:857–867. doi: 10.1016/0092-8674(89)90938-0. [DOI] [PubMed] [Google Scholar]
- 291.Saier MH. Differential codon usage—A safeguard against inappropriate expression of specialized genes. FEBS Lett. 1995;362:1–4. doi: 10.1016/0014-5793(95)00185-c. [DOI] [PubMed] [Google Scholar]
- 292.Scheper GC, Voorma HO, Thomas AAM. Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Lett. 1994;352:271–275. doi: 10.1016/0014-5793(94)00975-9. [DOI] [PubMed] [Google Scholar]
- 293.Schöffl F, Rieping M, Baumann G, Bevan M, Angermüller S. The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol Gen Genet. 1989;217:246–253. doi: 10.1007/BF02464888. [DOI] [PubMed] [Google Scholar]
- 294.Scholthof HB, Gowda S, Wu FC, Shepherd RJ. The fulllength transcript of caulimovirus is a polycistronic mRNA whose genes are transactivated by the product of gene VI. J Virol. 1992;66:3131–3139. doi: 10.1128/jvi.66.5.3131-3139.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 295.Scholthof HB, Wu FC, Gowda S, Shepherd RJ. Regulation of caulimovirus gene expression and the involvement of cis-acting elements on both viral transcripts. Virology. 1992;190:403–412. doi: 10.1016/0042-6822(92)91226-k. [DOI] [PubMed] [Google Scholar]
- 296.Scholthof KGB, Scholthof HB, Jackson AO. The tomato bushy stunt virus replicase proteins are coordinately expressed and membrane associated. Virology. 1995;208:365–369. doi: 10.1006/viro.1995.1162. [DOI] [PubMed] [Google Scholar]
- 297.Schultze M, Hohn T, Jiricny J. The reverse transcriptase gene of cauliflower mosaic virus is translated separately form the capsid gene. EMBO J. 1990;9:1177–1185. doi: 10.1002/j.1460-2075.1990.tb08225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Sedman SA, Gelembiuk GW, Mertz JE. Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5′ cap. J Virol. 1990;64:453–457. doi: 10.1128/jvi.64.1.453-457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 299.Sha YS, Broglio EP, Cannon JF, Schoelz JE. Expression of a plant viral polycistronic mRNA in yeast Saccharomyces cerevisiae mediated by a plant virus translational transactivator. Proc Natl Acad Sci USA. 1995;92:8911–8915. doi: 10.1073/pnas.92.19.8911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 300.Shakin SH, Liebhaber SA. Destabilization of messenger RNA/complementary DNA duplexes by the elongating 80S ribosome. J Biol Chem. 1986;261:16018–16025. [PubMed] [Google Scholar]
- 301.Shen LX, Tinoco I. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J Mol Biol. 1995;247:963–978. doi: 10.1006/jmbi.1995.0193. [DOI] [PubMed] [Google Scholar]
- 302.Shen Q, Leonard JL, Newburger PE. Structure and function of the selenium translation element in the 3′-untranslated region of human cellular glutathione peroxidase mRNA. RNA. 1995;1:519–525. [PMC free article] [PubMed] [Google Scholar]
- 303.Shirako Y, Wilson TMA. Complete nucleotide sequence and organization of the bipartite RNA genome of soil-borne wheat mosaic virus. Virology. 1993;195:16–32. doi: 10.1006/viro.1993.1342. [DOI] [PubMed] [Google Scholar]
- 304.Sieliwanowicz B. The influence of poly(A)-binding proteins on translation of poly(A)+ RNA in a cell-free system from embryo axes of dry pea seeds. Biochim Biophys Acta. 1987;908:54–59. [Google Scholar]
- 305.Skadsen RW, Scandalios JG. Translational control of photoinduced expression of the Cat2 catalase gene during leaf development in maize. Proc Natl Acad Sci USA. 1987;84:2785–2789. doi: 10.1073/pnas.84.9.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 306.Skuzeski JM, Nichols LM, Gesteland RF. Analysis of leaky viral translation termination codons in vivo by transient expression of improved β-glucuronidase vectors. Plant Mol Biol. 1990;15:65–79. doi: 10.1007/BF00017725. [DOI] [PubMed] [Google Scholar]
- 307.Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol. 1991;218:365–373. doi: 10.1016/0022-2836(91)90718-l. [DOI] [PubMed] [Google Scholar]
- 308.Sleat DE, Gallie DR, Jefferson RA, Bevan MW, Turner PC, Wilson TMA. Characterization of the 5′-leader of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene. 1987;60:217–225. doi: 10.1016/0378-1119(87)90230-7. [DOI] [PubMed] [Google Scholar]
- 309.Sleat DE, Hull R, Turner PC, Wilson TMA. Studies on the mechanism of translational enhancement by the 5′-leader sequences of tobacco mosaic virus RNA. Eur J Biochem. 1988;175:75–86. doi: 10.1111/j.1432-1033.1988.tb14168.x. [DOI] [PubMed] [Google Scholar]
- 310.Slovin JP, Tobin EM. Synthesis and turnover of the light-harvesting chlorophyll a/b-protein in Lemna gibba grown with intermittent red light: possible translational control. Planta. 1982;154:465–474. doi: 10.1007/BF01267815. [DOI] [PubMed] [Google Scholar]
- 311.Smirnyagina EV, Morozov SY, Radionova NP, Miroschnichenko NA, Solovyev AG, Fedorkin ON, Atabekov JG. Translational efficiency and competitive ability of mRNAs with 5′-untranslated αβ-leader of potato virus X RNA. Biochimie. 1991;73:587–598. doi: 10.1016/0300-9084(91)90027-x. [DOI] [PubMed] [Google Scholar]
- 312.Smith D, Yarus M. tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci USA. 1989;86:4397–4401. doi: 10.1073/pnas.86.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 313.Somogyi P, Jenner AJ, Brierley I, Inglis SC. Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol. 1993;13:6931–6940. doi: 10.1128/mcb.13.11.6931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 314.Sonenberg N. Picornavirus RNA translation continues to surprise. Trends Genet. 1991;7:105–106. doi: 10.1016/0168-9525(91)90440-2. [DOI] [PubMed] [Google Scholar]
- 315.Springer BA, Sligar SG. High-level expression of sperm whale myoglobin in Escherichia coli. Proc Natl Acad Sci USA. 1987;84:8961–8965. doi: 10.1073/pnas.84.24.8961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 316.Standart N, Jackson RJ. Regulation of translation by specific protein mRNA interactions. Biochimie. 1994;76:867–879. doi: 10.1016/0300-9084(94)90189-9. [DOI] [PubMed] [Google Scholar]
- 317.Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakowski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995;14:4365–4373. doi: 10.1002/j.1460-2075.1995.tb00111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 318.Stansfield I, Jones KM, Tuite MF. The end in sight: terminating translation in eukaryotes. Trend Biochem Sci. 1995;20:489–491. doi: 10.1016/s0968-0004(00)89113-6. [DOI] [PubMed] [Google Scholar]
- 319.Strazielle C, Benoit H, Hirth L. Particularités structurales de l'acide ribonucléique extrait du virus de la mosaïque jaune du navet. II. J Mol Biol. 1965;13:735–748. [Google Scholar]
- 320.Sullivan ML, Green PJ. Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. Plant Mol Biol. 1993;23:1091–1104. doi: 10.1007/BF00042344. [DOI] [PubMed] [Google Scholar]
- 321.Suzuki N, Sugawara M, Kusano T. Rice dwarf phytoreovirus segment S12 transcript is tricistronic in vitro. Virology. 1992;191:992–995. doi: 10.1016/0042-6822(92)90279-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 322.Tacke E, Prüfer D, Salamini F, Rohde W. Characterization of a potato leafroll luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression. J Gen Virol. 1990;71:2265–2272. doi: 10.1099/0022-1317-71-10-2265. [DOI] [PubMed] [Google Scholar]
- 323.Tacke E, Kull B, Prüfer D, Reinold S, Schmitz J, Salamini F, Rohde W. PLRV expression in potato. In: Bills DD, Kung S-D, editors. Viral Pathogenesis and Disease Resistance. River Edge: World Scientific Publishing; 1994. [Google Scholar]
- 324.Tahara SM, Dietlin TA, Dever TE, Merrick WC, Worrilow LM. Effect of eukaryotic initiation factor 4F on AUG selection in a bicistronic mRNA. J Biol Chem. 1991;266:3594–3601. [PubMed] [Google Scholar]
- 325.Takahashi H, Shimamoto K, Ehara Y. Cauliflower mosaic virus gene VI causes growth suppression, development of necrotic spots and expression of defence-related genes in transgenic tobacco plant. Mol Gen Genet. 1989;216:188–194. [Google Scholar]
- 326.Tamada T, Kusume T. Evidence that the 75K readthrough protein of beet necrotic yellow vein virus RNA-2 is essential for transmission by the fungus Polymyxa betae. J Gen Virol. 1991;72:1497–1504. doi: 10.1099/0022-1317-72-7-1497. [DOI] [PubMed] [Google Scholar]
- 327.Tanaka T, Nishihara M, Seki M, Sakamoto A, Tanaka K, Irifune K, Morikawa H. Successful expression in pollen of various plant species of in vitro synthesized mRNA introduced by particle bombardment. Plant Mol Biol. 1995;28:337–341. doi: 10.1007/BF00020252. [DOI] [PubMed] [Google Scholar]
- 328.Taylor JL, Jones JDG, Sandler S, Mueller GM, Bedbrook J, Dunsmuir P. Optimizing the expression of chimeric genes in plant cells. Mol Gen Genet. 1987;210:572–577. [Google Scholar]
- 329.Ten Dam EB, Pleij CWA, Bosch L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330.Ten Dam EB, Verlaan PWG, Pleij CWA. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal-Loop lengths and stability of the stem regions. RNA. 1995;1:146–154. [PMC free article] [PubMed] [Google Scholar]
- 331.Thach RE. Cap recap: the involvement of eIF-4F in regulating gene expression. Cell. 1992;68:177–180. doi: 10.1016/0092-8674(92)90461-k. [DOI] [PubMed] [Google Scholar]
- 332.Thomas AAM, Scheper GC, Voorma HO. Hypothesis: is eukaryotic initiation factor 2 the scanning factor? New Biol. 1992;4:404–407. [PubMed] [Google Scholar]
- 333.Thomas AAM, Ter Haar E, Wellink J, Voorma HO. Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. J Virol. 1991;65:2953–2959. doi: 10.1128/jvi.65.6.2953-2959.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 334.Timmer RT, Benkowski LA, Schodin D, Lax SR, Metz AM, Ravel JM, Browning KS. The 5′ and 3′ untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5′ cap structure. J Biol Chem. 1993;268:9504–9510. [PubMed] [Google Scholar]
- 335.Tomashevskaya OL, Solovyev AG, Karpova OV, Fedorkin ON, Rodionova P, Morozov SY, Atabekov JG. Effects of sequence elements in the potato virus X RNA 5′-non-translated αβ-leader on its translation enhancing activity. J Gen Virol. 1993;74:2717–2724. doi: 10.1099/0022-1317-74-12-2717. [DOI] [PubMed] [Google Scholar]
- 336.Tu C, Tzeng TW, Bruenn JA. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci USA. 1992;89:8636–8640. doi: 10.1073/pnas.89.18.8636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 337.Tulin EE, Tsutsumi K, Eijiri S. Continuously coupled transcription-translation system for the production of rice cytoplasmic aldolase. Biotech Bioeng. 1995;45:511–516. doi: 10.1002/bit.260450608. [DOI] [PubMed] [Google Scholar]
- 338.Tuite MF, Stansfield I. Translation-Knowing when to stop. Nature. 1994;372:614–615. doi: 10.1038/372614a0. [DOI] [PubMed] [Google Scholar]
- 339.Turner R, Bate N, Twell D, Foster GD. Analysis of a translational enhancer upstream from the coat protein open reading frame of potato virus S. Arch Virol. 1994;134:321–333. doi: 10.1007/BF01310570. [DOI] [PubMed] [Google Scholar]
- 340.Tyc K, Konarska M, Gross HJ, Filipowicz W. Multiple ribosome binding to the 5′-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome-mRNA complex at an AUU codon. Eur J Biochem. 1984;140:503–511. doi: 10.1111/j.1432-1033.1984.tb08131.x. [DOI] [PubMed] [Google Scholar]
- 341.Tzeng T-H, Tu C-L, Bruenn JA. Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus. J Virol. 1992;66:999–1006. doi: 10.1128/jvi.66.2.999-1006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 342.Vagner S, Gensac M-C, Maret A, Bayard F, Prats H, Prats A-C. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol. 1995;15:35–44. doi: 10.1128/mcb.15.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 343.Vagner S, Waysbort A, Marenda M, Gensac MC, Amalric F, Prats AC. Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor. J Biol Chem. 1995;270:20376–20383. doi: 10.1074/jbc.270.35.20376. [DOI] [PubMed] [Google Scholar]
- 344.Valle RPC, Morch M-D. Stop making sense. Regulation at the level of termination in eukaryotic protein synthesis. FEBS Lett. 1988;235:1–15. doi: 10.1016/0014-5793(88)81225-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 345.Valle RPC, Haenni A-L. Peptide chain termination. In: Trachsel H, editor. Translation in Eukaryotes. Boca Raton, FL: CRC Press; 1991. pp. 177–189. [Google Scholar]
- 346.Valle RPC, Drugeon G, Devignes-Morch MD, Legocki AB, Haenni A-L. Codon context effects in virus translational read-through. A study in vitro of the determinants of TMV and Mo-MuLV amber suppression. FEBS Lett. 1992;306:133–139. doi: 10.1016/0014-5793(92)80984-o. [DOI] [PubMed] [Google Scholar]
- 347.Vancanneyt G, Rosahl S, Willmitzer L. Translatability of plant mRNAs strongly influences its accumulation in transgenic plants. Nucl Acids Res. 1990;18:2917–2921. doi: 10.1093/nar/18.10.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 348.Vayda ME, Shewmaker CK, Morelli JK. Translational arrest in hypoxic potato tubers is correlated with the aberrant association of elongation factor EF-1-alpha with polysomes. Plant Mol Biol. 1995;28:751–757. doi: 10.1007/BF00021198. [DOI] [PubMed] [Google Scholar]
- 349.Veidt I, Bouzoubaa SE, Leiser R-M, Ziegler-Graf V, Guilley H, Richards K, Jonard G. Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology. 1992;186:192–200. doi: 10.1016/0042-6822(92)90073-x. [DOI] [PubMed] [Google Scholar]
- 350.Verver J, Le Gall O, Van Kammen A, Wellink J. The sequence between nucleotides 161 and 512 of cowpea mosaic virus M RNA is able to support internal initiation of translation in vitro. J Gen Virol. 1991;72:2339–2345. doi: 10.1099/0022-1317-72-10-2339. [DOI] [PubMed] [Google Scholar]
- 351.Vimaladithan A, Farabaugh PJ. Special peptidyl-tRNA molecules can promote translational frameshift without slippage. Mol Cell Biol. 1994;14:8107–8116. doi: 10.1128/mcb.14.12.8107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 352.Wandelt C, Feix G. Sequence of a maize 21 kd zein gene from maize containing an in-frame stop codon. Nucl Acids Res. 1989;17:2354. doi: 10.1093/nar/17.6.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 353.Wang S, Miller WA. A sequence located 4.5 to 5 kilobases from the 5′ end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped RNA. J Biol Chem. 1995;270:13446–13452. doi: 10.1074/jbc.270.22.13446. [DOI] [PubMed] [Google Scholar]
- 354.Webster C, Kim C-Y, Roberts JKM. Elongation and termination reactions of protein synthesis on maize root tip polysomes studied in a homologous cell-free system. Plant Physiol. 1991;96:418–425. doi: 10.1104/pp.96.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 355.Weiland J, Dreher TW. Infectious TYMV RNA from cloned cDNA: Effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucl Acids Res. 1989;17:4675–4687. doi: 10.1093/nar/17.12.4675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356.Weiss R, Dunn DM, Shuh M, Atkins JF, Gesteland RF. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2–50 percent. New Biol. 1989;1:159–169. [PubMed] [Google Scholar]
- 357.Weiss RB, Huang WM, Dunn DM. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell. 1990;62:117–126. doi: 10.1016/0092-8674(90)90245-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 358.Werner M, Feller A, Messenguy F, Piérard A. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell. 1987;49:805–813. doi: 10.1016/0092-8674(87)90618-0. [DOI] [PubMed] [Google Scholar]
- 359.Wiedmann B, Sakai H, Davies TA, Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature. 1994;370:434–440. doi: 10.1038/370434a0. [DOI] [PubMed] [Google Scholar]
- 360.Wills NM, Gesteland RF, Atkins JF. Evidence that a downstream pseudoknot is required for translational readthrough of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci USA. 1991;88:6991–6995. doi: 10.1073/pnas.88.16.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 361.Wills NM, Gesteland RF, Atkins JF. Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer of loop 2. EMBO J. 1994;13:4137–4144. doi: 10.1002/j.1460-2075.1994.tb06731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 362.Wolin SL, Walter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 1988;7:3559–3569. doi: 10.1002/j.1460-2075.1988.tb03233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 363.Xiong Z, Kim KH, Kendall TL, Lommel SA. Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro. Virology. 1993;193:213–221. doi: 10.1006/viro.1993.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 364.Yonath A, Leonard KR, Wittmann HG. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science. 1987;236:813–816. doi: 10.1126/science.3576200. [DOI] [PubMed] [Google Scholar]
- 365.Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S. Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. J Virol. 1985;55:870–873. doi: 10.1128/jvi.55.3.870-873.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 366.Zaccomer B, Haenni A-L, Macaya G. The remarkable variety of plant virus genomes. J Gen Virol. 1995;76:231–247. doi: 10.1099/0022-1317-76-2-231. [DOI] [PubMed] [Google Scholar]
- 367.Zelenina DA, Kulaeva OI, Smirnyagina EV, Solovyev AG, Miroshnichenko NA, Fedorkin ON, Rodionova NP, Morozov SY, Atabekov JG. Translation enhancing properties of the 5′-leader of potato virus X genomic RNA. FEBS Lett. 1992;296:267–270. doi: 10.1016/0014-5793(92)80301-v. [DOI] [PubMed] [Google Scholar]
- 368.Zerfass K, Beier H. Pseudouridine in the anticodon GψA of plant cytoplasmic tRNATyr is required for UAG and UAA suppression in the TMV specific context. Nucl Acids Res. 1992;20:5911–5918. doi: 10.1093/nar/20.22.5911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 369.Zerfass K, Beier H. The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAsTrp with CmCA anticodon. EMBO J. 1992;11:4167–4173. doi: 10.1002/j.1460-2075.1992.tb05510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 370.Zeyenko VV, Ryabova LA, Gallie DR, Spirin AS. Enhancing effect of the 3′-untranslated region of tobacco mosaic virus RNA on protein synthesis in vitro. FEBS Lett. 1994;354:271–273. doi: 10.1016/0014-5793(94)01126-5. [DOI] [PubMed] [Google Scholar]
- 371.Zhang SP, Goldman E, Zubay G. Clustering of low usage codons and ribosomal movement. J Theor Biol. 1994;170:339–3554. doi: 10.1006/jtbi.1994.1196. [DOI] [PubMed] [Google Scholar]
- 372.Zhouraleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and 3RF3. EMBO J. 1995;14:4065–4072. doi: 10.1002/j.1460-2075.1995.tb00078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 373.Ziegler V, Richards K, Guilley H, Jonard G, Putz C. Cell-free translation of beet-necrotic yellow vein virus: read-through of the coat protein cistron. J Gen Virol. 1985;66:2079–2087. [Google Scholar]
- 374.Zijlstra C, Hohn T. Cauliflower mosaic virus gene VI controls translation from dicistronic expression units in transgenic Arabidopsis plants. Plant Cell. 1992;4:1471–1484. doi: 10.1105/tpc.4.12.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 375.Zimmer A, Zimmer AM, Reynolds K. Tissue specific expression of the retinoic acid receptor-beta-2: Regulation by short open reading frames in the 5′-noncoding region. J Cell Biol. 1994;127:1111–1119. doi: 10.1083/jcb.127.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]