Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 May 20;53(4):685–694. doi: 10.1007/s11426-010-0135-7

Recent advances in proteolysis and peptide/protein separation by chromatographic strategies

XiangMin Zhang 1, BaoHong Liu 1, LiHua Zhang 2, HanFa Zou 2, Jing Cao 1, MingXia Gao 1, Jia Tang 1, Yun Liu 1, PengYuan Yang 1,, YuKui Zhang 2,
PMCID: PMC7089403  PMID: 32214996

Abstract

This review gives a broad glance on the progress of recent advances on proteolysis and peptide/protein separation by chromatographic strategies in the past ten years, covering the main research in these areas especially in China. The reviewed research focused on enzymatic micro-reactors and peptide separation in bottom-up approaches, and protein and peptide separation in top-down approaches. The new enzymatic micro-reactor is able to accelerate proteolytic reaction rate from conventionally a couple of hours to a few seconds, and the multiple dimensional chromatographic-separation with various models or arrays could sufficiently separate the proteomic mixture. These advances have significantly promoted the research of protein/peptide separation and identification in proteomics.

Keywords: proteolysis, enzymatic digestion, chromatographic separation, peptide enrichment, mass spectrometry

Footnotes

Support from the Major State Basie Research Development Program (Grant No. 2007CB914100), the National Natural Science Foundation of China (Grant Nos. 20875016 & 20735005), and Shanghai Projects (Grant Nos. 08DZ2293601 & B109).

Contributor Information

PengYuan Yang, Email: pyyang@fudan.edu.cn.

YuKui Zhang, Email: ykzhang@dicp.ac.cn.

References

  • 1.Svec F. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis. 2006;27:947–961. doi: 10.1002/elps.200500661. [DOI] [PubMed] [Google Scholar]
  • 2.Wang H., Hanash S. Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B. 2003;787:11–18. doi: 10.1016/S1570-0232(02)00335-5. [DOI] [PubMed] [Google Scholar]
  • 3.Licklider L., Kuhr W.G. Characterization of reaction dynamics in a trypsin-modified capillary microreactor. Anal Chem. 1998;70:1902–1908. doi: 10.1021/ac970852q. [DOI] [PubMed] [Google Scholar]
  • 4.Guo Z., Zhang Q.C., Lei Z.D., Kong L., Mao X.Q., Zou H.F. Studies on rapid micro-scale peptide mapping analysis using a capillary micro-reactor. Chem J Chin Univ. 2002;23:1277–1280. [Google Scholar]
  • 5.Guo Z., Xu S.Y., Lei Z.D., Zou H.F., Guo B.C. Immobilized metal-ion chelating capillary microreactor for peptide mapping analysis of proteins by matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2003;24:3633–3639. doi: 10.1002/elps.200305621. [DOI] [PubMed] [Google Scholar]
  • 6.Bossi A., Guizzardi L., D’Acuto M.R., Righetti P.G. Controlled enzyme-immobilisation on capillaries for microreactors for peptide mapping. Anal Bioanal Chem. 2004;378:1722–1728. doi: 10.1007/s00216-003-2352-9. [DOI] [PubMed] [Google Scholar]
  • 7.Kim J., Grate J.W., Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci. 2006;61:1017–1026. doi: 10.1016/j.ces.2005.05.067. [DOI] [Google Scholar]
  • 8.Fan J., Shui W.Q., Yang P.Y., Wang X.Y., Xu Y.M., Wang H.H., Chen X., Zhao D.Y. Mesoporous silica nanoreactors for highly efficient proteolysis. Chem Eur J. 2005;11:5391–5396. doi: 10.1002/chem.200500060. [DOI] [PubMed] [Google Scholar]
  • 9.Li Y., Xu X.Q., Yan B., Deng C.H., Yu W.J., Yang P.Y., Zhang X.M. microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis. J Proteome Res. 2007;6:2367–2375. doi: 10.1021/pr060558r. [DOI] [PubMed] [Google Scholar]
  • 10.Liu Y., Xue Y., Ji J., Chen X., Kong J.L., Yang P.Y., Girault H.H., Liu B.H. Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis. Mol Cel Proteomics. 2007;6:1428–1436. doi: 10.1074/mcp.T600055-MCP200. [DOI] [PubMed] [Google Scholar]
  • 11.Qian K., Wan J.J., Qiao L., Huang X.D., Tang J.W., Wang Y.H., Kong J.L., Yang P.Y., Yu C.Z., Liu B.H. Macroporous materials as novel catalysts for efficient and controllable proteolysis. Anal Chem. 2009;81(14):5749–5756. doi: 10.1021/ac900550q. [DOI] [PubMed] [Google Scholar]
  • 12.Bi H.Y., Qiao L., Busnel J.-M., Liu B.H., Girault H.H. Kinetics of proteolytic reactions in nanoporous materials. J Proteome Res. 2009;8:4685–4692. doi: 10.1021/pr9003954. [DOI] [PubMed] [Google Scholar]
  • 13.Josic D., Clifton J.G. Use of monolithic supports in proteomics technology. J Chromatogr A. 2007;1144:2–13. doi: 10.1016/j.chroma.2006.11.082. [DOI] [PubMed] [Google Scholar]
  • 14.Zhu G.J., Zhang L.H., Yuan H.M., Liang Z., Zhang W.B., Zhang Y.K. Recent development of monolithic materials as matrices in microcolumn separation systems. J Sep Sci. 2007;3:792–803. doi: 10.1002/jssc.200600496. [DOI] [PubMed] [Google Scholar]
  • 15.Krenková J., Bilková Z., Foret F. Chararacterization of a monolithic immobilized trypsin microreactor with on-line coupling to ESI-MS. J Sep Sci. 2005;28:1675–1684. doi: 10.1002/jssc.200500171. [DOI] [PubMed] [Google Scholar]
  • 16.Duan J.C., Sun L.L., Liang Z., Zhang J., Wang H., Zhang L.H., Zhang W.B., Zhang Y.K. Rapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2006;1106:165–174. doi: 10.1016/j.chroma.2005.11.102. [DOI] [PubMed] [Google Scholar]
  • 17.Duan J.C., Liang Z., Yang C., Zhang J., Zhang L.H., Zhang W.B., Zhang Y.K. Rapid protein identification using monolithic enzymatic microreactor and LC-ESI-MS/MS. Proteomics. 2006;6:412–419. doi: 10.1002/pmic.200500234. [DOI] [PubMed] [Google Scholar]
  • 18.Ye M.L., Hu S., Schoenherr R.M., Dovichi N.J. On-line protein digestion and peptide mapping by capillary electrophoresis with post-column labeling for laser-induced fluorescence detection. Electrophoresis. 2004;25:1319–1326. doi: 10.1002/elps.200305841. [DOI] [PubMed] [Google Scholar]
  • 19.Feng S., Ye M.L., Jiang X.G., Jin W.H., Zou H.F. Coupling the immobilized trypsin microreactor of monolithic capillary with μRPLC-MS/MS for shotgun proteome analysis. J Proteome Res. 2006;5:422–428. doi: 10.1021/pr0502727. [DOI] [PubMed] [Google Scholar]
  • 20.Jiang H.H., Zou H.F., Wang H.L., Ni J.Y., Zhang Q., Zhang Y.K. On-line characterization of the activity and reaction kinetics of immobilized enzyme by high-performance frontal analysis. J Chromatogr A. 2000;903:77–84. doi: 10.1016/S0021-9673(00)00846-3. [DOI] [PubMed] [Google Scholar]
  • 21.Tyan Y.C., Jong S.B., Liao J.D., Liao P.C., Yang M.H., Liu C.Y., Klauser R., Himmelhaus M., Grunze M. proteomic profiling of erythrocyte proteins by proteolytic digestion chip and identification using two-dimensional electrospray ionization tandem mass spectrometry. J Proteome Res. 2005;4:748–757. doi: 10.1021/pr0497780. [DOI] [PubMed] [Google Scholar]
  • 22.Liu Y., Lu H.J., Zhong W., Song P.Y., Kong J.L., Yang P.Y., Girault H.H., Liu B.H. Multilayer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification. Anal Chem. 2006;78:801–808. doi: 10.1021/ac051463w. [DOI] [PubMed] [Google Scholar]
  • 23.Jin W., Brennan J.D. Properties and applications of proteins encapsulated within sol-gel derived materials. Anal Chim Acta. 2002;461:1–36. doi: 10.1016/S0003-2670(02)00229-5. [DOI] [Google Scholar]
  • 24.Liu Y., Xue Y., Ji J., Chen X., Kong J.L., Yang P.Y., Girault H.H., Liu B.H. Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis. Mol Cell Proteomics. 2007;6:1428–1436. doi: 10.1074/mcp.T600055-MCP200. [DOI] [PubMed] [Google Scholar]
  • 25.Liu Y., Qu H.Y., Xue Y., Yang P.Y., Liu B.H. Enhancement of proteolysis through the silica-gel-derived microfluidic reactor. Proteomics. 2007;7:1373–1378. doi: 10.1002/pmic.200600896. [DOI] [PubMed] [Google Scholar]
  • 26.Ekstrom S., Onnerfjord P., Nilsson J., Bengtsson M., Laurell T., Marko-Varga G. integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem. 2000;72:286–293. doi: 10.1021/ac990731l. [DOI] [PubMed] [Google Scholar]
  • 27.Liu Y., Zhong W., Meng S., Kong J.L., Lu H.J., Yang P.Y., Girault H.H., Liu B.H. Assembly-controlled biocompatible interface on a microchip: strategy to highly efficient proteolysis. Chem Eur J. 2006;12:6585–6591. doi: 10.1002/chem.200501622. [DOI] [PubMed] [Google Scholar]
  • 28.Wu H.L., Zhai J.J., Tian Y.P., Lu H.J., Wang X.Y., Jia W.T., Liu B.H., Yang P.Y., Xu Y.M., Wang H.H. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. Lab Chip. 2004;4:588–597. doi: 10.1039/b408222b. [DOI] [PubMed] [Google Scholar]
  • 29.Xu Z.R., Fang Z.L. Composite poly(dimethylsiloxane)/glass microfluidic system with an immobilized enzymatic particle-bed reactor and sequential sample injection for chemiluminescence determinations. Anal Chim Acta. 2004;507:129–135. doi: 10.1016/j.aca.2003.12.039. [DOI] [Google Scholar]
  • 30.Yu T., Zhang Y.H., You C.P., Zhuang J.H., Wang B., Liu B.H., Kang Y.J., Tang Y. Controlled nanozeolite-assembled electrode: remarkable enzyme-immobilization ability and high sensitivity as biosensor. Chem Eur J. 2006;12:1137–1143. doi: 10.1002/chem.200500562. [DOI] [PubMed] [Google Scholar]
  • 31.Washburn M.P., Walters D., Yates J.R., III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–247. doi: 10.1038/85686. [DOI] [PubMed] [Google Scholar]
  • 32.Dai J., Shieh C.H., Sheng Q., Zhou H., Zeng R. Proteomic analysis with integrated multiple dimensional liquid chromatography/mass spectrometry based on elution of ion exchange column using pH steps. Anal Chem. 2005;77:5793–5799. doi: 10.1021/ac050251w. [DOI] [PubMed] [Google Scholar]
  • 33.Dai J., Jin W., Sheng Q., Shieh C., Wu J., Zeng R. Protein phosphorylation and expression profiling by yin-yang multidimensional liquid chromatography (yin-yang mdlc) mass spectrometry. J Proteome Res. 2007;6:250–262. doi: 10.1021/pr0604155. [DOI] [PubMed] [Google Scholar]
  • 34.Jiang X., Feng S., Tian R., Han G., Jiang X., Ye M., Zou H. Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column. Proteomics. 2007;7:528–539. doi: 10.1002/pmic.200600661. [DOI] [PubMed] [Google Scholar]
  • 35.Wang F., Jiang X., Feng S., Tian R., Jiang X., Han G., Liu H., Ye M., Zou H. Automated injection of uncleaned samples using a ten-port switching valve and a strong cation-exchange trap column for proteome analysis. J Chromatogr A. 2007;1171:56–62. doi: 10.1016/j.chroma.2007.09.048. [DOI] [PubMed] [Google Scholar]
  • 36.Nice E.C., Rothacker J., Weinstock J., Lim L., Catimel B. Use of multidimensional separation protocols for the purification of trace components in complex biological samples for proteomics analysis. J Chromatogr A. 2007;1168:190–210. doi: 10.1016/j.chroma.2007.06.015. [DOI] [PubMed] [Google Scholar]
  • 37.Bedani F., Kok W., Janssen H. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography × liquid chromatography. J Chromatogr A. 2006;1133:126–134. doi: 10.1016/j.chroma.2006.08.048. [DOI] [PubMed] [Google Scholar]
  • 38.Wang J., Jiang Y., Jiang H., Cai Y., Qian X. Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS. Proteomics. 2006;6:404–411. doi: 10.1002/pmic.200500223. [DOI] [PubMed] [Google Scholar]
  • 39.Madera M., Mechref Y., Klouckova I., Novotny M.V. Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J Proteome Res. 2006;5:2348–2363. doi: 10.1021/pr060169x. [DOI] [PubMed] [Google Scholar]
  • 40.Ma J.F., Liu J.X., Sun L.L., Gao L., Liang Z., Zhang L.H., Zhang Y.K. Online integration of multiple sample pretreatment steps involving denaturation, reduction, and digestion with microflow reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry for high-throughput proteome profiling. Anal Chem. 2009;81:6534–6540. doi: 10.1021/ac900971w. [DOI] [PubMed] [Google Scholar]
  • 41.Yuan H.M., Zhou Y., Zhang L.H., Liang Z., Zhang Y.K. Integrated protein analysis platform based on column switch recycling size exclusion chromatography, microenzymatic reactor and μRPLC-ESI-MS/MS. J Chromatogr A. 2009;1216:7478–7482. doi: 10.1016/j.chroma.2009.06.019. [DOI] [PubMed] [Google Scholar]
  • 42.Zhang J., Xu X., Shen H., Zhang X. Analysis of nuclear proteome in C57 mouse liver tissue by a nano-flow 2-D-LC-ESI-MS/MS approach. J Sep Sci. 2006;29:2635–2646. doi: 10.1002/jssc.200600065. [DOI] [PubMed] [Google Scholar]
  • 43.Zhang J., Xu X., Gao M., Yang P., Zhang X. Comparison of 2-D LC and 3-D LC with post- and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue. Proteomics. 2007;7:500–512. doi: 10.1002/pmic.200500880. [DOI] [PubMed] [Google Scholar]
  • 44.Cao R., Zhang L., Nie S., Wang X., Liang S. Analysis of mouse liver plasma membrane proteins by multidimensional liquid chromatogra phy-tandem mass spectrometry. Chin J Biochem Mol Bio. 2005;21:134–142. [Google Scholar]
  • 45.Zhang Y., Shi R., Meng Q., Wang J. Studies on a novel and large-scale proteomics method and its application. Chin J Anal Chem. 2005;33:1371–1375. [Google Scholar]
  • 46.Jiang X., Zhou H., Zhang L., Sheng Q. A high-throughput approach for subcellular proteome- Identification of rat liver proteins using sub-cellular fractionation coupled with two-dimensional liquid chromatography tandem mass spectrometry and bioinformatic analysis. Mole Cell Proteomics. 2004;3.5:441–455. doi: 10.1074/mcp.M300117-MCP200. [DOI] [PubMed] [Google Scholar]
  • 47.Zeng R., Ruan H., Jiang X., Zhou H. Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis. J Proteome Res. 2004;3:549–555. doi: 10.1021/pr034111j. [DOI] [PubMed] [Google Scholar]
  • 48.Chinese Human Liver Proteome Profiling Consortium J Proteome Res. 2010;9:79–94. doi: 10.1021/pr900532r. [DOI] [PubMed] [Google Scholar]
  • 49.Horn A., Kreusch S., Bublitz R., Hoppe H., Cumme G.A., Schulze M., Moore T., Ditze G., Rhode H. Multidimensional proteomics of human serum using parallel chromatography of native constituents and microplate technology. Proteomics. 2006;6:559–570. doi: 10.1002/pmic.200500142. [DOI] [PubMed] [Google Scholar]
  • 50.Liu C., Zhang X. Multidimensional capillary array liquid chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for high-throughput proteomic analysis. J Chromatogr A. 2007;1139:191–198. doi: 10.1016/j.chroma.2006.11.019. [DOI] [PubMed] [Google Scholar]
  • 51.Gu X., Deng C., Yan G., Zhang X. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis. J Proteome Res. 2006;5:3186–3196. doi: 10.1021/pr0602592. [DOI] [PubMed] [Google Scholar]
  • 52.Jin W., Dai J., Li S., Xia Q., Zou H.F., Zeng R. Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification. J Proteome Res. 2005;4:613–619. doi: 10.1021/pr049761h. [DOI] [PubMed] [Google Scholar]
  • 53.Sharma S., Simpson D.C., Tolic N., Jaitly N., Mayampurath A.M., Smith R.D., Pasa-Tolic L. Proteomic profiling of intact proteins using wax-rplc 2-D separations and fticr mass spectrometry. J Proteome Res. 2007;6:602–610. doi: 10.1021/pr060354a. [DOI] [PubMed] [Google Scholar]
  • 54.Rothemund D.L., Locke V.L., Liew A., Thomas T.M., Wasinger V., Rylatt D.B. Depletion of the highly abundant protein albumin from human plasma using the Gradiflow. Proteomics. 2003;3:279–287. doi: 10.1002/pmic.200390041. [DOI] [PubMed] [Google Scholar]
  • 55.Wasinger V.C., Locke V.L., Raftery M.J., Larance M., Rothemund D., Liew A., Bate I., Guilhaus M. Two-dimensional liquid chromatography/tandem mass spectrometry analysis of GradiflowTM fractionated native human plasma. Proteomics. 2005;5:3397–3401. doi: 10.1002/pmic.200401160. [DOI] [PubMed] [Google Scholar]
  • 56.Gao M., Zhang J., Deng C., Yang P., Zhang X. Novel strategy of high-abundance protein depletion using multidimensional liquid chromatography. J Proteome Res. 2006;5:2853–2860. doi: 10.1021/pr0602186. [DOI] [PubMed] [Google Scholar]
  • 57.Li X., Gong Y., Wu S., Cai Y., He P., Lu Z., Ying W., Zhang Y., Jiao L., He H., Zhang Z., He F., Zhao X., Qian X. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Proteomics. 2005;5:3423–3441. doi: 10.1002/pmic.200401226. [DOI] [PubMed] [Google Scholar]
  • 58.Lohaus C., Nolte A., Blüggel M., Scheer C., Klose J., Gobom J., Schüler A., Wiebringhaus T., Meyer H.E., Marcus K. Multidimensional chromatography: a powerful tool for the analysis of membrane proteins in mouse brain. J Proteome Res. 2007;6:105–113. doi: 10.1021/pr060247g. [DOI] [PubMed] [Google Scholar]
  • 59.Qin L., He X.W., Zhang W., Li W.Y., Zhang Y.K. Macroporous thermo-sensitive imprinted hydrogel for recognition of protein by metal coordinate interaction. Anal Chem. 2009;81:7206–7216. doi: 10.1021/ac900676t. [DOI] [PubMed] [Google Scholar]
  • 60.Zhu G.J., Yuan H.M., Zhao P., Zhang L.H., Liang Z., Zhang W.B., Zhang Y.K. Macroporous polyacrylamide-based monolithic column with immobilized pH gradient for protein analysis. Electrophoresis. 2006;27:3578–3583. doi: 10.1002/elps.200600189. [DOI] [PubMed] [Google Scholar]
  • 61.Han B., Wang P.L., Zhu G.J., Zhang L.H., Qu F., Deng Y.L., Zhang Y.K. Microchip free flow isoelectric focusing for protein prefractionation using monolith with immobilized pH gradient. J Sep Sci. 2009;32:1211–1215. doi: 10.1002/jssc.200800572. [DOI] [PubMed] [Google Scholar]
  • 62.Yuan H.M., Zhang L.H., Zhang W.B., Liang Z., Zhang Y.K. Columns switch recycling size exclusion chromatography for high resolution protein separation. J Chromatogr A. 2009;1216:7024–7032. doi: 10.1016/j.chroma.2009.08.065. [DOI] [PubMed] [Google Scholar]
  • 63.Gu X., Wang Y., Zhang X.M. Large-bore particle-entrapped monolithic precolumns prepared by a sol-gel method for on-line peptides trapping and preconcentration in multidimensional liquid chromatography system for proteome analysis. J ChromatogrA. 2005;1072:223–232. doi: 10.1016/j.chroma.2005.03.032. [DOI] [PubMed] [Google Scholar]
  • 64.Zhang X.M., Huang S. Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology. J Chromatogr A. 2001;910:13–18. doi: 10.1016/S0021-9673(00)01184-5. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES