Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2010 Nov 14;15(2):347–360. doi: 10.1007/s11030-010-9285-y

Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists

Nataša Obermajer 1,2, Sara Sattin 3, Cinzia Colombo 3, Michela Bruno 3, Urban Švajger 4, Marko Anderluh 5,, Anna Bernardi 3,
PMCID: PMC7089406  PMID: 21076980

Abstract

In this article, we describe the design, synthesis and activity evaluation of glycomimetic DC-SIGN antagonists, that use a mannose residue to anchor to the protein carbohydrate recognition domain (CRD). The molecules were designed from the structure of the known pseudo-mannobioside antagonist 1, by including additional hydrophobic groups, which were expected to engage lipophilic areas of DC-SIGN CRD. The results demonstrate that the synthesized compounds potently inhibit DC-SIGN-mediated adhesion to mannan coated plates. Additionally, in silico docking studies were performed to rationalize the results and to suggest further optimization.

Electronic supplementary material

The online version of this article (doi:10.1007/s11030-010-9285-y) contains supplementary material, which is available to authorized users.

Keywords: Anti-infectives, Carbohydrates, DC-SIGN, Dendritic cell-based assay, Glycoconjugates, Glycomimetics

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 917 kb) (916.5KB, doc)
ESM 2 (PDF 898 kb) (897.3KB, pdf)

Abbreviations

BSA

Bovine serum albumin

CFSE

Carboxyfluorescein succinimidyl ester

CRD

Carbohydrate- recognition domain

DC

Dendritic cell

DCC

Dicyclohexyl carbodiimide

DC-SIGN

Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin

DMA

N,N-Dimethylacetamide

DMAP

4-Dimethylaminopyridine

DMSO

Dimethyl sulfoxide

EDC

1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide

FBS

Fetal bovine serum

HATU

O-(7-Azabenzotriazole)- N,N,N′,N′ - tetramethyluronium hexafluorophosphate

LPS

Lipopolysaccharide

MCPBA

m-Chloroperoxybenzoic acid

PAMPs

Pathogen-associated molecular patterns

PBS

Phosphate buffered saline

PFP

Pentafluorophenyl

rhGM-CSF

Recombinant human granulocyte-macrophage colony-stimulating factor

rhIL-4

Recombinant human interleukin-4

RMSD

Root mean square deviation

SAR

Structure–activity relationship

SDS

Sodium dodecyl sulfate

SPR

Surface-plasmon resonance

THF

Tetrahydrofuran

TLC

Thin-layer chromatography

TLR

Toll-like receptor

ManLAM

Mannosylated lipoarabinomannan

TMSOTf

Trimethylsilyl triflate

Contributor Information

Marko Anderluh, Email: marko.anderluh@ffa.uni-lj.si.

Anna Bernardi, Email: anna.bernardi@unimi.it.

References

  • 1.Steinman RM, Banchereau R. Taking dendritic cells into medicine. Nature. 2007;449:419–426. doi: 10.1038/nature06175. [DOI] [PubMed] [Google Scholar]
  • 2.Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB. C-Type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity. 2007;26:605–616. doi: 10.1016/j.immuni.2007.03.012. [DOI] [PubMed] [Google Scholar]
  • 3.Geijtenbeek TB, den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Futur Microbiol. 2009;4:879–890. doi: 10.2217/fmb.09.51. [DOI] [PubMed] [Google Scholar]
  • 4.Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 2009;10:1081–1088. doi: 10.1038/ni.1778. [DOI] [PubMed] [Google Scholar]
  • 5.Švajger U, Anderluh M, Jeras M, Obermajer N. C-type lectin DC-SIGN; an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal. 2010;22:1397–1405. doi: 10.1016/j.cellsig.2010.03.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Coutanceau E, Decalf J, Martino A, Babon A, Winter N, Cole ST, Albert ML, Demangel C. Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. J Exp Med. 2007;204:1395–1403. doi: 10.1084/jem.20070234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.van Kooyk Y, Appelmelk B, Geijtenbeek TBH. A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends Mol Med. 2003;9:153–159. doi: 10.1016/S1471-4914(03)00027-3. [DOI] [PubMed] [Google Scholar]
  • 8.Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, Kewal- Ramani VN, Littman DR, Figdor CG, van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances transinfection of T cells. Cell. 2000;100:587–597. doi: 10.1016/S0092-8674(00)80694-7. [DOI] [PubMed] [Google Scholar]
  • 9.van Kooyk Y, Geijtenbeek TBH. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol. 2003;3:697–709. doi: 10.1038/nri1182. [DOI] [PubMed] [Google Scholar]
  • 10.Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med. 2008;86:861–874. doi: 10.1007/s00109-008-0350-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ernst B, Magnani JL. From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov. 2009;8:661–677. doi: 10.1038/nrd2852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Reina JJ, Sattin S, Invernizzi D, Mari S, Martinez-Prats L, Tabarani G, Fieschi F, Delgado R, Nieto PM, Rojo J, Bernardi A. 1,2-Mannobioside mimic: synthesis, DC-SIGN interaction by NMR and docking, and antiviral activity. ChemMedChem. 2007;2:1030–1036. doi: 10.1002/cmdc.200700047. [DOI] [PubMed] [Google Scholar]
  • 13.Borrok MJ, Kiessling LL. Non-carbohydrate inhibitors of the lectin DC-SIGN. J Am Chem Soc. 2007;129:12780–12785. doi: 10.1021/ja072944v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Mitchell DA, Jones NA, Hunter SJ, Cook JMD, Jenkinson SF, Wormald MR, Dwek RA, Fleet GWJ. Synthesis of 2-C-branched derivatives of d-mannose: 2-C-aminomethyl-d-mannose binds to the human C-type lectin DC-SIGN with affinity greater than an order of magnitude compared to that of d-mannose. Tetrahedron. 2007;18:1502–1510. doi: 10.1016/j.tetasy.2007.06.003. [DOI] [Google Scholar]
  • 15.Timpano G, Tabarani G, Anderluh M, Invernizzi D, Vasile F, Potenza D, Nieto PM, Rojo J, Fieschi F, Bernardi A. Synthesis of novel DC-SIGN ligands with an α-fucosylamide anchor. ChemBioChem. 2008;9:1921–1930. doi: 10.1002/cbic.200800139. [DOI] [PubMed] [Google Scholar]
  • 16.Garber KCA, Wangkanont K, Carlson EE, Kiessling LL. A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN. Chem Commun. 2010;46:6747–6749. doi: 10.1039/c0cc00830c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rojo J, Delgado R. Glycodendritic structures: promising new antiviral drugs. J Antimicrob Chemother. 2004;54:579–581. doi: 10.1093/jac/dkh399. [DOI] [PubMed] [Google Scholar]
  • 18.Lasala F, Arce E, Otero J, Rojo F, Delgado R. Mannosyl glycodendritic structures inhibit DC-SIGN-mediated ebola virus infection in cis and in trans. Antimicrob Agents Chemother. 2003;47:3970–3972. doi: 10.1128/AAC.47.12.3970-3972.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tabarani G, Reina JJ, Ebel C, Vives C, Lortat-Jacob H, Rojo F, Fieschi F. Mannose hyperbranched dendritic polymers interact with clustered organization of DC-SIGN and inhibit gp120 binding. FEBS Lett. 2006;580:2402–2408. doi: 10.1016/j.febslet.2006.03.061. [DOI] [PubMed] [Google Scholar]
  • 20.Wang S-K, Liang P-H, Astronomo RD, Hsu TL, Hsieh S-L, Burton DR, Wong C-H. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci USA. 2008;105:3690–3695. doi: 10.1073/pnas.0712326105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Sattin S, Daghetti A, Thépaut M, Berzi A, Sánchez-Navarro M, Tabarani G, Rojo J, Fieschi F, Clerici M, Bernardi A. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol. 2010;5:301–312. doi: 10.1021/cb900216e. [DOI] [PubMed] [Google Scholar]
  • 22.Martìnez-Avila O, Bedoya LM, Marradi M, Clavel C, Alcamì J, Penadés S. Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem. 2009;10:1806–1809. doi: 10.1002/cbic.200900294. [DOI] [PubMed] [Google Scholar]
  • 23.Martìnez-Avila O, Hijazi K, Marradi M, Clavel C, Campion C, Kelly C, Penadés S. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chem Eur J. 2009;15:9874–9888. doi: 10.1002/chem.200900923. [DOI] [PubMed] [Google Scholar]
  • 24.Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol. 2004;11:591–598. doi: 10.1038/nsmb784. [DOI] [PubMed] [Google Scholar]
  • 25.Obermajer N, Švajger U, Jeras M, Sattin S, Bernardi A, Anderluh M. An assay for functional DC-SIGN inhibitors of human dendritic cell adhesion. Anal Biochem. 2010;406:222–229. doi: 10.1016/j.ab.2010.07.018. [DOI] [PubMed] [Google Scholar]
  • 26.CambridgeSoft©. ChemBioOffice Ultra, ChemBioDraw version 12.0.
  • 27.CambridgeSoft©. ChemBioOffice Ultra, ChemBio3D Ultra version 12.0, GAMESS interface.
  • 28.Crystal Structure of DC-SIGN carbohydrate recognition domain complexed with Man4. Protein data bank. http://www.pdb.org/pdb/explore/explore.do?structureId=1SL4. (Accessed 6 July 2009)
  • 29.BioSolve IT (GmbH). FlexX version 3.1.2.
  • 30.Accelrys Software Inc.© Discovery Studio v 2.5.5.9350.
  • 31.Lee DJ, Kowalczyk R, Muir VJ, Rendle PM, Brimble MA. A comparative study of different glycosylation methods for the synthesis of d-mannopyranosides of N-_-fluorenylmethoxycarbonyl-trans-4-hydroxy-l-proline allyl ester. Carbohydr Res. 2007;342:2628–2634. doi: 10.1016/j.carres.2007.08.015. [DOI] [PubMed] [Google Scholar]
  • 32.Bernardi A, Arosio D, Manzoni L, Micheli F, Pasquarello A, Seneci P. Stereoselective synthesis of conformationally constrained cyclohexanediols: a set of molecular scaffolds for the synthesis of glycomimetics. J Org Chem. 2001;66:6209–6216. doi: 10.1021/jo015570b. [DOI] [PubMed] [Google Scholar]
  • 33.Švajger U, Vidmar A, Jeras M. Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4. Int Immunopharmacol. 2008;8:997–1005. doi: 10.1016/j.intimp.2008.03.006. [DOI] [PubMed] [Google Scholar]
  • 34.Molecular ProbesTM, Invitrogen detection technologies: CellTraceTM CFSE Cell Proliferation Kit (C34554), Product information. Revised 24-June-2005 [Online]. http://probes.invitrogen.com/media/pis/mp34554.pdf. (Accessed 26 August 2009)
  • 35.OriginLab©. Data Analysis and Graphing Software. OriginPro version 7.5 and 8.
  • 36.Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol. 2003;77:12022–12032. doi: 10.1128/JVI.77.22.12022-12032.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Lozach PY, Lortat-Jacob H, de Lacroix de Lavalette A, Staropoli I, Foung S, Amara A, et al. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem. 2003;278:20358–20366. doi: 10.1074/jbc.M301284200. [DOI] [PubMed] [Google Scholar]
  • 38.Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003;197:823–829. doi: 10.1084/jem.20021840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Lin G, Simmons G, Pohlmann S, Baribaud F, Ni H, Leslie GJ, et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol. 2003;77:1337–1346. doi: 10.1128/JVI.77.2.1337-1346.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Marzi A, Gramberg T, Simmons G, Moller P, Rennekamp AJ, Krumbiegel M, et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004;78:12090–12095. doi: 10.1128/JVI.78.21.12090-12095.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, et al. pH-Dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004;78:5642–5650. doi: 10.1128/JVI.78.11.5642-5650.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Regan AD, Whittaker GR. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. J Virol. 2008;82:11992–11996. doi: 10.1128/JVI.01094-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Wang SF, Huang JC, Lee YM, Liu SJ, Chan YJ, Chau YP, et al. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans. Biochem Biophys Res Commun. 2008;373:561–566. doi: 10.1016/j.bbrc.2008.06.078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Gaudart N, Ekpo P, Pattanapanyasat K, van Kooyk Y, Engering A. Leptospira interrogans is recognized through DC-SIGN and induces maturation and cytokine production by human dendritic cells. FEMS Immunol Med Microbiol. 2008;53:359–367. doi: 10.1111/j.1574-695X.2008.00437.x. [DOI] [PubMed] [Google Scholar]
  • 45.Bernardi A, Cheshev P. Interfering with the sugar code: design and synthesis of oligosaccharide mimics. Chem Eur J. 2008;14:7434–7441. doi: 10.1002/chem.200800597. [DOI] [PubMed] [Google Scholar]
  • 46.Cumpstey I, Salomonsson E, Sundin A, Leffler H, Nilsson UJ. Double affinity amplification of galectin–ligand interactions through arginine–arene interactions: synthetic, thermodynamic, and computational studies with aromatic diamido thiodigalactosides. Chem Eur J. 2008;14:4233–4245. doi: 10.1002/chem.200701932. [DOI] [PubMed] [Google Scholar]
  • 47.Tejler J, Salameh B, Leffler H, Nilsson UJ. Fragment-based development of triazole-substituted O-galactosyl aldoximes with fragment-induced affinity and selectivity for galectin-3. Org Biomol Chem. 2009;7:3982–3990. doi: 10.1039/b909091f. [DOI] [PubMed] [Google Scholar]
  • 48.Mesch S, Lemme K, Koliwer-Brandl H, Strasser DS, Schwardt O, Kelm S, Ernst B. Kinetic and thermodynamic properties of MAG antagonists. Carbohydr Res. 2010;345:1348–1359. doi: 10.1016/j.carres.2010.03.010. [DOI] [PubMed] [Google Scholar]
  • 49.Mesch S, Moser D, Strasser DS, Kelm A, Cutting B, Rossato G, Vedani A, Koliwer-Brandl H, Wittwer M, Rabbani S, Schwardt O, Kelm S, Ernst B. Low molecular weight antagonists of the myelin-associated glycoprotein: synthesis, docking, and biological evaluation. J Med Chem. 2010;53:1597–1615. doi: 10.1021/jm901517k. [DOI] [PubMed] [Google Scholar]
  • 50.Sattin S (2009) Synthesis of Inhibitors of DC-SIGN mediated infections. Ph.D. Thesis, University of Milan.
  • 51.Sanchez-Navarro M (2009) Sintesis de sistemas multivalentes de carbohidratos basados en glicodendrones. Ph.D. Thesis, University of Seville.
  • 52.Carpino LA. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc. 1993;115:4397–4398. doi: 10.1021/ja00063a082. [DOI] [Google Scholar]
  • 53.Ye Y, Liu J, Kao MLK, Marshall GR. Peptide-bond modification for metal coordination: peptides containing two hydroxamate groups. Pept Sci. 2003;71:489–515. doi: 10.1002/bip.10471. [DOI] [PubMed] [Google Scholar]
  • 54.Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, Simmons A. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nature Immun. 2007;8:569–577. doi: 10.1038/ni1470. [DOI] [PubMed] [Google Scholar]
  • 55.Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med. 2003;197:121–127. doi: 10.1084/jem.20021468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Turville SG, Cameron PU, Handley A, Lin G, Pöhlmann S, Doms RW, Cunningham AL. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol. 2002;3:975–983. doi: 10.1038/ni841. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ESM 1 (DOC 917 kb) (916.5KB, doc)
ESM 2 (PDF 898 kb) (897.3KB, pdf)

Articles from Molecular Diversity are provided here courtesy of Nature Publishing Group

RESOURCES