Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2002;25(1):85–93. doi: 10.1023/A:1020178326531

Molecular Characterization of Three New Avian Infectious Bronchitis Virus (IBV) Strains Isolated in Quebec

Ridha Smati 1,2, Amer Silim 2, Claude Guertin 1, Marc Henrichon 1, Mehdi Marandi 2, Max Arella 2, Abderrazzak Merzouki 1,
PMCID: PMC7089411  PMID: 12206312

Abstract

Three unrecognized field isolates of Infectious Bronchitis Virus (IBV) were recovered from commercial broiler chickens vaccinated with live Mass viral strain (H120). These isolates were identified by immunofluorescence using monoclonal antibodies produced against reference serotypes: Mass, Conn, and Ark. RT-PCRs were performed on viral RNAs to amplify S1 gene using a specific set of primers S1OLIGO3′ and S1OLIGO5′. Restriction polymorphism (RFLP) of PCR products was determined by the use of HaeIII restriction enzyme. As expected, patterns of PCR products were different from common pattern of strains assigned to Mass serotype M41, Beaudette, H120, and Florida. Molecular analysis showed a nucleotide insertion in hypervariable region one (HVR-1) of S1 gene of only Quebec isolates (Qu16, Qu_mv and Q_37zm). However, New Brunswick IBV isolate (NB_cp) did not display these insertions. Major amino acid changes involved insertion of two stretches (aa118–119: Arg–Ser and aa141–145: Sys–Ser–Asn–Ala–Ser–Cys) located at N-terminal and C-terminal regions of HVR-2. It is speculated that cysteine residue located upstream and downstream of Cys–Ser–Asn–Ala–Ser–Cys segment might be involved in the formation of loop structure and disulfide bond that could trigger important epitope changes. Insertion of new NXT and NXS (X≠P) glycosylation motifs scattered along S1 region and insertion of cysteine residues in HVR are contributing to the antigenic shifting of Quebec isolates. Fragment insertions were thought to be induced by inter-serotype recombination between vaccine strain (H120) that belongs to Mass serotype and another strain belonging to Ark serotype. Phylogenetic tree based on amino acid sequences showed that Quebec isolates formed a new phylogenetic cluster.

Keywords: IBV, RT-PCR, RFLP, serotype, variant, VN

References

  • 1.Ignjatovic J., Sapats S. Avian infectious bronchitis virus. Rev Sci Tech. 2000;19(2):493–508. doi: 10.20506/rst.19.2.1228. [DOI] [PubMed] [Google Scholar]
  • 2.Hofstad M.S. Cross-immunity in chickens using seven isolates of avian infectious bronchitis virus. Avian Dis. 1984;25(3):650–654. [PubMed] [Google Scholar]
  • 3.De Vries A.A., Horzinek M.C., Rottier P.J.M., de Groot R.J. The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Semin Virol. 1997;8:33–47. doi: 10.1006/smvy.1997.0104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Lai M.M., Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Siddell S.G. The Coronaviridae. New York: Plenum Press; 1995. pp. 1–10. [Google Scholar]
  • 6.Kusters J.G., Niesters H.G.M., Lenstra J.A., Horzinek M.C., Van Der Zeijst B.A.M. Phylogeny of antigenic variants of avian coronavirus IBV. Virology. 1989;169:217–221. doi: 10.1016/0042-6822(89)90058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Koch G., Hartog L., Kant A., Van Rozelaar D.J. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. General Virol. 1990;71:1929–1935. doi: 10.1099/0022-1317-71-9-1929. [DOI] [PubMed] [Google Scholar]
  • 8.Gelb J., Jr, Wolff J.B., Morran C.A. Variant serotypes of infectious bronchitis virus isolated from commercial layer and broiler chickens. Avian Dis. 1991;35:82–87. [PubMed] [Google Scholar]
  • 9.Moore K.M., Benett J.D., Seal B.S., Jackwood M.W. Sequence comparison of avian infectious bronchitis virus S1 glycoproteins of the Florida serotype and five variant isolates from Georgia and California. Virus Genes. 1998;17(1):63–83. doi: 10.1023/A:1008057118625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gelb J., Jr, Keeler C.L., Jr, Nix W.A., Rosenberger J.K., Cloud S.S. Antigenic and S-1 genomic characterization of the Delaware variant serotype of infectious bronchitis virus. Avian Dis. 1997;41(3):661–669. [PubMed] [Google Scholar]
  • 11.Ignjatovi J., Galli I. The S1 glycoprotein but not N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Archiv Virol. 1994;138:117–134. doi: 10.1007/BF01310043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Marandi M.V., Harel J., Mittal K.R. Identification by monoclonal antibodies of serotype D strains of Pasteurella multocida representing various geographic origins and host species. J Med Microbiol. 1997;46:1–8. doi: 10.1099/00222615-46-7-603. [DOI] [PubMed] [Google Scholar]
  • 13.Karaca K., Naqi S., Gelb J., Jr Production and characterization of monoclonal antibodies to three infectious bronchitis virus serotypes. Avian Dis. 1992;36:903–915. [PubMed] [Google Scholar]
  • 14.Sambrook J., Fitish E.F., and Maniatis T., Molecular cloning, a laboratory manual, 2nd edn, 1989.
  • 15.Callison S.A., Jackwood M.W., Hilt D.A. Molecular characterization of infectious bronchitis virus isolates foreign to the United States and comparison with United States isolates. Avian Dis. 2001;45(2):492–499. [PubMed] [Google Scholar]
  • 16.Lee C.-W., Jackwood M.W. Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Archiv Virol. 2000;145(10):2135–2148. doi: 10.1007/s007050070044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lai M.M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992;56:61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Cavanagh D., Davis P.J., Cook J.K.A. Infectious Bronchitis virus Evidence for recombination within the Massachusetts serotype. Avian Pathol. 1992;21:401–408. doi: 10.1080/03079459208418858. [DOI] [PubMed] [Google Scholar]
  • 19.Wang L., Junker D., Collisson E.W. Evidence of natural recombination within S1 gene of infectious bronchitis virus. Virology. 1993;192:710–716. doi: 10.1006/viro.1993.1093. [DOI] [PubMed] [Google Scholar]
  • 20.Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., Vand Pol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–158. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  • 21.Hansson M., Ringdahl J., Robert A., Power U., Goetsch L., Nguyen T.N., Uhlen M., Stahl S., Nygren P.A. An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology. 1999;4(3–4):237–252. doi: 10.1016/s1380-2933(98)00026-8. [DOI] [PubMed] [Google Scholar]
  • 22.Wang L., Xu Y., Clollisson E.W. Experimental conformation of recombination upstream of the S1 hypervariable region of infectious bronchitis virus. Virus Res. 1997;49(2):139–145. doi: 10.1016/S0168-1702(97)01466-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Chou P.Y., Fasman G.D. Prediction of the secondary structure of proteins from their amino sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  • 24.Lodish H.F. and Darnell J.E., in: Freeman W.-H. (ed.), Molecular Cell Biology 4th edn., 2000.
  • 25.Kwon H.M., Jackwood M.W., Gelb J., Jr. Differentiation of infectious bronchitis virus serotypes using polymerase chain-reaction and restriction-fragment-length-polymorphism analysis. Avian Dis. 1993;37:194–202. [PubMed] [Google Scholar]
  • 26.Wang L., Junker D., Hock L., Ebiary E., Collisson E.W. Evolutionary implication of genetic variations in the S1 gene of infectious bronchitis virus. Virus Res. 1994;34:327–338. doi: 10.1016/0168-1702(94)90132-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Gulati B.R., Patnayak D.P., Sheikh A.M., Poss P.E. Protective efficacy of high-passage avian pneumo virus (APV/MN/turkery/1–a/97) in turkeys. Avian Dis. 2001;45(3):593–597. [PubMed] [Google Scholar]

Articles from Virus Genes are provided here courtesy of Nature Publishing Group

RESOURCES