Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Apr 17;9(1):14–20. doi: 10.1007/s11908-007-0017-0

Mixed community-acquired lower respiratory tract infections

Paolo Tarsia, Stefano Aliberti, Maria Pappalettera, Francesco Blasi 1,
PMCID: PMC7089415  PMID: 17254500

Abstract

Although mixed infections are known to be clinically relevant in conditions such as nosocomial pneumonia and ventilator-related pneumonia, it is increasingly recognized that a substantial number of community-acquired lower respiratory tract infections may also be attributed to more than one pathogenic organism. A better definition of the true incidence of mixed infections in community-acquired lower respiratory tract infections is partly derived from recent advances in available diagnostic methods (eg, molecular biology). Two points still must be determined: whether the presence of a mixed infection is associated with altered outcomes and whether empirical antibiotic selection should be modified to account for potential polymicrobial infections.

Keywords: Chronic Obstructive Pulmonary Disease, Chronic Obstructive Pulmonary Disease Patient, Mixed Infection, Oseltamivir, Respiratory Virus

References and Recommended Reading

  • 1.Combes A., Figliolini C., Trouillet J.L., et al. Incidence and outcome of polymicrobial ventilator-associated pneumonia. Chest. 2002;121:1618–1623. doi: 10.1378/chest.121.5.1618. [DOI] [PubMed] [Google Scholar]
  • 2.Brogden K.A., Guthmiller J.M., Taylor C.E. Human polymicrobial infections. Lancet. 2005;365:253–255. doi: 10.1016/S0140-6736(05)17745-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Sethi S. Bacterial pneumonia: managing a deadly complication of influenza in older adults with comorbid disease. Geriatrics. 2002;57:56–61. [PubMed] [Google Scholar]
  • 4.Beadling C., Slifka M.K. How do viral infections predispose patients to bacterial infections? Curr Opin Infect Dis. 2004;17:185–191. doi: 10.1097/00001432-200406000-00003. [DOI] [PubMed] [Google Scholar]
  • 5.McCullers J.A., Rehg J.E. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis. 2002;186:341–350. doi: 10.1086/341462. [DOI] [PubMed] [Google Scholar]
  • 6.Okamoto S., Kawabata S., Nakagawa I., et al. Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. J Virol. 2003;77:4104–4112. doi: 10.1128/JVI.77.7.4104-4112.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Peltola V.T., Murti K.G., McCullers J.A. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis. 2005;192:249–257. doi: 10.1086/430954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Marrie T.J., Peeling R.W., Reid T., et al. Chlamydia species as a cause of community-acquired pneumonia in Canada. Eur Respir J. 2003;21:779–784. doi: 10.1183/09031936.03.00095403. [DOI] [PubMed] [Google Scholar]
  • 9.Gleason P.P. The emerging role of atypical pathogens in community-acquired pneumonia. Pharmacotherapy. 2002;22:2S–11S. doi: 10.1592/phco.22.2.2S.33130. [DOI] [PubMed] [Google Scholar]
  • 10.Esposito S., Bosis S., Cavagna R., et al. Characteristics of Streptococcus pneumoniae and atypical bacterial infections in children 2–5 years of age with community-acquired pneumonia. Clin Infect Dis. 2002;35:1345–1352. doi: 10.1086/344191. [DOI] [PubMed] [Google Scholar]
  • 11.Laundy M., Ajayi-Obe E., Hawrami K., et al. Influenza A community-acquired pneumonia in East London infants and young children. Pediatr Infect Dis J. 2003;22(10Suppl):S233–S237. doi: 10.1097/01.inf.0000092192.59459.8b. [DOI] [PubMed] [Google Scholar]
  • 12.Juvén T., Mertsola J., Waris M., et al. Clinical response to antibiotic therapy for community-acquired pneumonia. Eur J Pediatr. 2004;136:140–144. doi: 10.1007/s00431-003-1397-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Tsolia M.N., Psarras S., Bossios A., et al. Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections. Clin Infect Dis. 2004;39:681–686. doi: 10.1086/422996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Michelow I.C., Olsen K., Lozano J., et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics. 2004;113:701–707. doi: 10.1542/peds.113.4.701. [DOI] [PubMed] [Google Scholar]
  • 15.Korppi M., Heiskanen-Kosma T., Kleemola M. Incidence of community-acquired pneumonia in children caused by Mycoplasma pneumoniae: serological results of a prospective, population-based study in primary health care. Respirology. 2004;9:109–114. doi: 10.1111/j.1440-1843.2003.00522.x. [DOI] [PubMed] [Google Scholar]
  • 16.Tsai M.H., Huang Y.C., Chen C.J., et al. Chlamydial pneumonia in children requiring hospitalization: effect of mixed infection on clinical outcome. J Microbiol Immunol Infect. 2005;38:117–122. [PubMed] [Google Scholar]
  • 17.Lagerström F., Bader M., Foldevi M., et al. Microbiological etiology in clinically diagnosed community-acquired pneumonia in primary care in Örebro, Sweden. Clin Microbiol Infect. 2003;9:645–652. doi: 10.1046/j.1469-0691.2003.00602.x. [DOI] [PubMed] [Google Scholar]
  • 18.Beovic B., Bonac B., Kee D., et al. Aetiology and clinical presentation of mild community-acquired bacterial pneumonia. Eur J Clin Microbiol Dis. 2003;22:584–591. doi: 10.1007/s10096-003-0997-0. [DOI] [PubMed] [Google Scholar]
  • 19.Marrie T.J., Poulin-Costello M., Beecroft M.D., Herman-Gnjidic Z. Etiology of community-acquired pneumonia treated in an ambulatory setting. Respir Med. 2005;99:60–65. doi: 10.1016/j.rmed.2004.05.010. [DOI] [PubMed] [Google Scholar]
  • 20.Van der Eerden M.M., Vlaspolder F., de Graaff C.S., et al. Value of intensive diagnostic microbiological investigation in low-and high-risk patients with community-acquired pneumonia. Eur J Clin Microbiol Infect Dis. 2005;24:241–249. doi: 10.1007/s10096-005-1316-8. [DOI] [PubMed] [Google Scholar]
  • 21.Watthanathum A., Chaoprasong C., Nunthapisud P., et al. Community-acquired pneumonia in southeast Asia: the microbial differences between ambulatory and hospitalized patients. Chest. 2003;123:1512–1519. doi: 10.1378/chest.123.5.1512. [DOI] [PubMed] [Google Scholar]
  • 22.Lauderdale T.L., Chang F.Y., Ben R.J., et al. Etiology of community-acquired pneumonia among adult patients requiring hospitalization in Taiwan. Respir Med. 2005;99:1079–1086. doi: 10.1016/j.rmed.2005.02.026. [DOI] [PubMed] [Google Scholar]
  • 23.Saito A., Kohno S., Matsushima T., et al. Prospective multicenter study of the causative organisms of community-acquired pneumonia in adults in Japan. J Infect Chemother. 2006;12:63–69. doi: 10.1007/s10156-005-0425-8. [DOI] [PubMed] [Google Scholar]
  • 24.Huang H.H., Zhang T.T., Xiu Q.F., et al. Community-acquired pneumonia in Shanghai, China: microbial etiology and implications for empirical therapy in a prospective study of 389 patients. Eur J Clin Microbiol Infect Dis. 2006;25:369–374. doi: 10.1007/s10096-006-0146-7. [DOI] [PubMed] [Google Scholar]
  • 25.Templeton K.E., Schlatinga S.A., van den Eeden W.C., et al. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005;41:345–351. doi: 10.1086/431588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gutiérrez F., Masiá M., Rodriguez J.C. Community-acquired pneumonia of mixed etiology: prevalence, clinical characteristics, and outcome. Eur J Clin Microbiol Infect Dis. 2005;24:377–383. doi: 10.1007/s10096-005-1346-2. [DOI] [PubMed] [Google Scholar]
  • 27.de Roux A., Ewig S., Garcia E. Mixed community-acquired pneumonia in hospitalised patients. Eur Respir J. 2006;27:795–800. doi: 10.1183/09031936.06.00058605. [DOI] [PubMed] [Google Scholar]
  • 28.Falguera M., Pifarre R., Martin A., et al. Etiology and outcome of community-acquired pneumonia in patients with diabetes mellitus. Chest. 2005;128:3233–3239. doi: 10.1378/chest.128.5.3233. [DOI] [PubMed] [Google Scholar]
  • 29.Roson B., Carratalá J., Dorca J., et al. Etiology, reasons for hospitalization, risk classes, and outcomes of community-acquired pneumonia in patients hospitalized on the basis of conventional admission criteria. Clin Infect Dis. 2001;33:158–165. doi: 10.1086/321808. [DOI] [PubMed] [Google Scholar]
  • 30.Ruiz M., Ewig S., Marcos M.A., et al. Etiology of community-acquired pneumonia: impact of age, comorbidity, and severity. Am J Respir Crit Care Med. 1999;160:397–405. doi: 10.1164/ajrccm.160.2.9808045. [DOI] [PubMed] [Google Scholar]
  • 31.Wilson P.A., Ferguson J. Severe community-acquired pneumonia: an Australian perspective. Intern Med J. 2005;35:699–705. doi: 10.1111/j.1445-5994.2005.00962.x. [DOI] [PubMed] [Google Scholar]
  • 32.Yoshimoto A., Nakamura H., Fujimura M., Nakao S. Severe community-acquired pneumonia in an intensive care unit: risk factors for mortality. Intern Med. 2005;44:710–716. doi: 10.2169/internalmedicine.44.710. [DOI] [PubMed] [Google Scholar]
  • 33.El-Solh A.A., Pietrantoni C., Bhat A., et al. Colonization of dental plaques: A reservoir of respiratory pathogens for hospital-acquired pneumonia in institutionalized elders. Chest. 2004;126:1575–1582. doi: 10.1378/chest.126.5.1575. [DOI] [PubMed] [Google Scholar]
  • 34.El-Solh A.A., Pietrantoni C., Bhat A., et al. Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med. 2003;167:1650–1654. doi: 10.1164/rccm.200212-1543OC. [DOI] [PubMed] [Google Scholar]
  • 35.Reza Shariatzadeh M., Huang J.Q., Marrie T.J. Differences in features of aspiration pneumonia according to site of acquisition: community or continuing care facility. J Am Geriatr Soc. 2006;54:296–302. doi: 10.1111/j.1532-5415.2005.00608.x. [DOI] [PubMed] [Google Scholar]
  • 36.Fernandez-Sabé N., Carratala J., Roson B., et al. Community-acquired pneumonia in very elderly patients: causative organisms, clinical characteristics, and outcomes. Medicine (Baltimore) 2003;82:159–169. doi: 10.1097/00005792-200305000-00002. [DOI] [PubMed] [Google Scholar]
  • 37.Eller J., Ede A., Schaberg T., et al. Infective exacerbations of chronic bronchitis: relation between bacteriologic etiology and lung function. Chest. 1998;113:1542–1548. doi: 10.1378/chest.113.6.1542. [DOI] [PubMed] [Google Scholar]
  • 38.Soler N., Torres A., Ewig S., et al. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med. 1998;157:1498–1505. doi: 10.1164/ajrccm.157.5.9711044. [DOI] [PubMed] [Google Scholar]
  • 39.Rosell A., Monsó E., Soler N., et al. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med. 2005;165:891–897. doi: 10.1001/archinte.165.8.891. [DOI] [PubMed] [Google Scholar]
  • 40.Seemungal T., Harper-Owen R., Bhowmik A., et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1618–1623. doi: 10.1164/ajrccm.164.9.2105011. [DOI] [PubMed] [Google Scholar]
  • 41.Rohde G., Wiethege A., Borg I., et al. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalization: a case-control study. Thorax. 2003;58:37–42. doi: 10.1136/thorax.58.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Bandi V., Jakubowycz M., Kinyon C., et al. Infectious exacerbations of chronic obstructive pulmonary disease associated with respiratory viruses and non-typeable Haemophilus influenzae. FEMS Immunol Med Microbiol. 2003;37:69–75. doi: 10.1016/S0928-8244(03)00100-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Cameron R.J., de Wit D., Welsh T.N., et al. Virus infection in exacerbations of chronic obstructive pulmonary disease requiring mechanical ventilation. Intensive Care Med. 2006;32:1022–1029. doi: 10.1007/s00134-006-0202-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Wilkinson T.M., Hurst J.R., Perera W.R., et al. Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest. 2006;129:317–324. doi: 10.1378/chest.129.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sethi S. Coinfection in exacerbations of COPD: a new frontier. Chest. 2006;129:223–224. doi: 10.1378/chest.129.2.223. [DOI] [PubMed] [Google Scholar]
  • 46.Papi A., Bellettato C.M., Braccioni F., et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114–1121. doi: 10.1164/rccm.200506-859OC. [DOI] [PubMed] [Google Scholar]
  • 47.Waterer G.W. Monotherapy versus combination antimicrobial therapy for pneumococcal pneumonia. Curr Opin Infect Dis. 2005;18:157–163. doi: 10.1097/01.qco.0000160906.02308.3c. [DOI] [PubMed] [Google Scholar]
  • 48.Treanor J.J., Hayden F.G., Vrooman P.S., et al. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. US Oral Neuraminidase Study Group. JAMA. 2000;283:1016–1024. doi: 10.1001/jama.283.8.1016. [DOI] [PubMed] [Google Scholar]
  • 49.Nordin J., Mullooly J., Poblete S., et al. Influenza vaccine effectiveness in preventing hospitalizations and deaths in persons aged 65 years or older in Minnesota, New York, and Oregon: data from 3 health plans. J Infect Dis. 2001;184:665–670. doi: 10.1086/323085. [DOI] [PubMed] [Google Scholar]

Articles from Current Infectious Disease Reports are provided here courtesy of Nature Publishing Group

RESOURCES