Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1990;15(10):1037–1043. doi: 10.1007/BF00965751

Substrate regulation of ascorbate transport activity in astrocytes

John X Wilson 1,, Ewa M Jaworski 1, Andrew Kulaga 1,2, S Jeffrey Dixon 1,2
PMCID: PMC7089431  PMID: 2077429

Abstract

Astrocytes possess a concentrativel-ascorbate (vitamin C) uptake mechanism involving a Na+-dependentl-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellularl-ascorbate on the activity of this transport system. Initial rates ofl-ascorbate uptake were measured by incubating primary cultures of rat astrocytes withl-[14C]ascorbate for 1 min at 37°C. We observed that the apparent maximal rate of uptake (V max) increased rapidly (<1 h) when cultured cells were deprived ofl-ascorbate. In contrast, there was no change in the apparent affinity of the transport system forl-[14C]ascorbate. The increase inV max was reversed by addition ofl-ascorbate, but notD-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures withl-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.

Key Words: Ascorbate, astrocytes, autoregulation, rat brain, transport mechanism, vitamin C

References

  • 1.Carey D. J., Todd M. S. Schwann cell myelination in a chemically defined medium: Demonstration of a requirement for additives that promote Schwann cell extracellular matrix formation. Dev. Brain Res. 1987;32:95–102. doi: 10.1016/0165-3806(87)90142-8. [DOI] [PubMed] [Google Scholar]
  • 2.Eldridge C. F., Bunge M. B., Bunge R. P., Wood P. M. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 1987;105:1023–1034. doi: 10.1083/jcb.105.2.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kaufman S., Friedman S. Dopamine beta-hydroxylase. Pharmacol. Rev. 1965;17:71–107. [PubMed] [Google Scholar]
  • 4.Kuo C.-H., Hata F., Yoshida H., Yamatodani A., Wada H. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci. 1979;24:911–916. doi: 10.1016/0024-3205(79)90341-2. [DOI] [PubMed] [Google Scholar]
  • 5.Brick P. L., Howlett A. C., Beinfeld M. C. Synthesis and release of vasoactive intestinal polypeptide (VIP) by mouse neuroblastoma cells: modulation by cyclic nucleotides and ascorbic acid. Peptides. 1985;6:1075–1078. doi: 10.1016/0196-9781(85)90430-9. [DOI] [PubMed] [Google Scholar]
  • 6.Miller B. T., Cicero T. J. Ascorbic acid enhances the release of luteinizing hormone-releasing hormone from the mediobasal hypothalamus in vitro. Life Sci. 1986;39:2447–2454. doi: 10.1016/0024-3205(86)90487-x. [DOI] [PubMed] [Google Scholar]
  • 7.Leslie F. M., Dunlap C. E., III, Cox B. M. Ascorbate decreases ligand binding to neurotransmitter receptors. J. Neurochem. 1980;34:219–221. doi: 10.1111/j.1471-4159.1980.tb04645.x. [DOI] [PubMed] [Google Scholar]
  • 8.Jones S. B., Bylund D. B. Ascorbic acid inhibition of alpha-adrenergic receptor binding. Biochem. Pharmacol. 1986;35:595–599. doi: 10.1016/0006-2952(86)90353-9. [DOI] [PubMed] [Google Scholar]
  • 9.Todd R. D., Bauer P. A. Ascorbate modulates 5-[3H]hydroxytryptamine binding to central 5-HT sites in bovine frontal cortex. J. Neurochem. 1988;50:1505–1512. doi: 10.1111/j.1471-4159.1988.tb03037.x. [DOI] [PubMed] [Google Scholar]
  • 10.Ceasar P. M., Hague P., Sharman D. F., Werdinius R. Studies on the metabolism of catecholamines in the central nervous system of the mouse. Br. J. Pharmacol. 1974;51:187–195. doi: 10.1111/j.1476-5381.1974.tb09646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Saner A., Weiser H., Hornig D., DePrada M., Pletscher A. Cerebral monoamine metabolism in guinea-pigs with ascorbic acid deficiency. J. Pharm. Pharmac. 1975;27:896–902. doi: 10.1111/j.2042-7158.1975.tb10244.x. [DOI] [PubMed] [Google Scholar]
  • 12.Wilson J. X., Walz W. Catecholamine uptake into cultured mouse astrocytes. In: Boulton A. A., Juorio A. V., Downer R. G. R., editors. Trace Amines: Comparative and Clinical Meurobiology. Clifton, U.S.A.: Human Press; 1988. pp. 301–305. [Google Scholar]
  • 13.Pelletier O. Turnover rates of D-isoascorbic acid and L-ascorbic acid in guinea pig organs. Can. J. Physiol. Pharmacol. 1969;47:993–997. doi: 10.1139/y69-162. [DOI] [PubMed] [Google Scholar]
  • 14.Arad I., Sidi A., Shohami E. Effect of acute hypoxia on ascorbic acid content of plasma, cerebral cortex, and adrenal gland. J. Neurochem. 1985;45:766–769. doi: 10.1111/j.1471-4159.1985.tb04058.x. [DOI] [PubMed] [Google Scholar]
  • 15.Tsao C. S., Leung P. Y., Young M. Effect of dietary ascorbic acid intake on tissue vitamin C in mice. J. Nutr. 1987;117:291–297. doi: 10.1093/jn/117.2.291. [DOI] [PubMed] [Google Scholar]
  • 16.Rose R. C. Transport of ascorbic acid and other watersoluble vitamins. Biochim. Biophys. Acta. 1988;947:335–366. doi: 10.1016/0304-4157(88)90014-7. [DOI] [PubMed] [Google Scholar]
  • 17.Sharma S. K., Johnstone R. M., Quastel J. H. Active transport of ascorbic acid in adrenal cortex and brain cortex in vitro and the effects of ACTH and steroids. Can. J. Biochem. Physiol. 1963;41:597–604. [PubMed] [Google Scholar]
  • 18.Spector R. Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 1989;53:1667–1674. doi: 10.1111/j.1471-4159.1989.tb09229.x. [DOI] [PubMed] [Google Scholar]
  • 19.Baker H., DeAngelis B., Frank O. Vitamins and other metabolites in various sera commonly used for cell culturing. Experientia. 1988;44:1007–1010. doi: 10.1007/BF01939904. [DOI] [PubMed] [Google Scholar]
  • 20.Raps S. P., Lai J. C. K., Hertz L., Cooper A. J. L. Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 1989;493:398–401. doi: 10.1016/0006-8993(89)91178-5. [DOI] [PubMed] [Google Scholar]
  • 21.Wilson J. X. Ascorbic acid uptake by a high-affinity sodium-dependent mechanism in cultured rat astrocytes. J. Neurochem. 1989;53:1064–1071. doi: 10.1111/j.1471-4159.1989.tb07396.x. [DOI] [PubMed] [Google Scholar]
  • 22.Wilson J. X., Dixon S. J. Ascorbic acid transport in mouse and rat astrocytes is reversibly inhibited by furosemide, SITS and DIDS. Neurochem. Res. 1989;14:1169–1175. doi: 10.1007/BF00965504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Washko P., Rotrosen D., Levine M. Ascorbic acid transport and accumulation in human neutrophils. J. Biol. Chem. 1989;264:18996–19002. [PubMed] [Google Scholar]
  • 24.Hertz L., Juurlink B. H. J., Fosmark H., Schousboe A. Methodological appendix: Astrocytes in primary cultures. In: Pfeiffer S. E., editor. Neuroscience Approached Through Cell Culture, Vol. 1. Boca Raton, Florida: CRC Press; 1982. pp. 175–186. [Google Scholar]
  • 25.Hertz L., Juurlink B. H. P., Szuchet S. Cell cultures. In: Laitha A., editor. Handbook of Neurochemistry, Vol. 8. 2nd edit. New York: Plenum Press; 1985. pp. 603–661. [Google Scholar]
  • 26.Wilson G. A. R., Beushausen S., Dales S. In vivo and in vitro models of demyelinating diseases: XV. Differentiation influences on the regulation of coronavirus infection in primary explants of mouse CNS. Virology. 1986;151:253–264. doi: 10.1016/0042-6822(86)90047-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 28.Mesmer O. T., Gordon B. A., Rupar C. A., Lo T. C. Y. Use of a genetic variant to study the hexose transport propenties of human skin fibroblasts. Biochem. J. 1990;265:823–829. doi: 10.1042/bj2650823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sokal R. R., Rohlf R. J. Biometry. San Francisco: W. H. Freeman; 1981. [Google Scholar]
  • 30.Rose R. C., Nahrwold D. L. Intestinal ascorbic acid transport following diets of high or low ascorbic acid content. Int. J. Vitam. Nutr. Res. 1978;48:382–386. [PubMed] [Google Scholar]
  • 31.Karasov W. H., Darken B. W. Rebound scurvy: does roduced intestinal transport of ascorbic acid play a role? FASEB J. 1989;3:A1154. [Google Scholar]
  • 32.Spector R., Greene L. A. Ascorbic acid transport by a clonal line of pheochromocytoma cells. Brain Res. 1977;136:131–140. doi: 10.1016/0006-8993(77)90137-8. [DOI] [PubMed] [Google Scholar]
  • 33.Shenk J. O., Miller E., Gaddis R., Adams R. N. Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res. 1982;253:353–356. doi: 10.1016/0006-8993(82)90709-0. [DOI] [PubMed] [Google Scholar]
  • 34.Hansson E. Astroglia from defined brain regions as studied with primary cultures. Prog. Neurobiol. 1988;30:369–397. doi: 10.1016/0301-0082(88)90008-1. [DOI] [PubMed] [Google Scholar]
  • 35.Tsao C. S., Salimi S. L. Differential determination of L-ascorbic acid and D-isoascorbic acid by reversed-phase high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 1982;245:355–358. doi: 10.1016/s0021-9673(00)88023-1. [DOI] [PubMed] [Google Scholar]
  • 36.Rivers J. M., Huang E. D., Doods M. L. Human metabolism of L-ascorbic acid and erythorbic acid. J. Nutr. 1963;81:163–168. doi: 10.1093/jn/81.2.163. [DOI] [PubMed] [Google Scholar]
  • 37.Widdas W. F. Old and new concepts of the membrane transport for glucose in cells. Biochim. Biophys. Acta. 1988;947:385–404. doi: 10.1016/0304-4157(88)90001-9. [DOI] [PubMed] [Google Scholar]
  • 38.Walker P. S., Donovan J. A., Van Ness B. G., Fellows R. E., Pessin J. E. Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J. Biol. Chem. 1989;263:15594–15601. [PubMed] [Google Scholar]
  • 39.Hara M., Matsuda Y., Okumura N., Hirai K., Nakagawa H. Effect of glucose starvation on glucose transport in neuronal cells in primary culture from rat brain. J. Neurochem. 1989;52:909–912. doi: 10.1111/j.1471-4159.1989.tb02541.x. [DOI] [PubMed] [Google Scholar]
  • 40.Roeder L. M., Tildon J. T., Williams I. B. Transport of 2-deoxy-D-glucose by dissociated brain cells. Brain Res. 1985;345:298–305. doi: 10.1016/0006-8993(85)91006-6. [DOI] [PubMed] [Google Scholar]
  • 41.Hara M., Matsuda Y., Hirai K., Okumura N., Nakagawa H. Characteristics of glucose tranport in neuronal cells and astrocytes from rat brain in primary culture. J. Neurochem. 1989;52:902–908. doi: 10.1111/j.1471-4159.1989.tb02540.x. [DOI] [PubMed] [Google Scholar]
  • 42.Marciani P., Lindi C., Faelli A., Esposito G. Effects of semistarvation on transintestinal D-glucose transport and D-glucose uptake in brush border and basolateral membranes of rat enterocytes. Pflugers Arch. 1987;408:220–223. doi: 10.1007/BF02181462. [DOI] [PubMed] [Google Scholar]
  • 43.Kelley D. S., Potter V. R. Repression, derepression, transinhibition, and trans-stimulation of amino acid transport in rat hepatocytes and four hepatoma cell lines in culture. J. Biol. Chem. 1979;254:6691–6697. [PubMed] [Google Scholar]
  • 44.Gazzola G. C., Dall'Asta V., Guidotti G. G. Adaptive regulation of amino acid transport in cultured human fibroblasts. Sites and mechanism of action. J. Biol. Chem. 1981;256:3191–3198. [PubMed] [Google Scholar]
  • 45.White M. F., Christensen H. N. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. J. Biol. Chem. 1983;258:8028–8038. [PubMed] [Google Scholar]
  • 46.Kilberg M. S. Amino acid transport in eukaryotic cells and tissues. Fed. Proc. 1986;45:2438–2454. [PubMed] [Google Scholar]
  • 47.Aussel C., Rousseau-Loric S., Cynober L., Agneray J., Ekindjian O. G. Neutral amino acid transport in human synovial cells: substrate specificity of adaptive regulation and transinhibition. J. Cell. Physiol. 1989;141:103–110. doi: 10.1002/jcp.1041410116. [DOI] [PubMed] [Google Scholar]
  • 48.Zafra F., Gimenez C. Characteristics and adaptive regulation of glycine transport in cultured glial cells. Biochem. J. 1989;258:403–408. doi: 10.1042/bj2580403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Escoubet B., Djabali K., Amiel C. Adaptation to Pi deprivation of cell Na-dependent Pi uptake: a widespread process. Am. J. Physiol. 1989;256:C322–C328. doi: 10.1152/ajpcell.1989.256.2.C322. [DOI] [PubMed] [Google Scholar]
  • 50.Frei B., England L., Ames B. N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA. 1989;86:6377–6381. doi: 10.1073/pnas.86.16.6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Rose R. C. Ascorbic acid protection against free radicals. Ann. N.Y. Acad. Sci. 1987;498:506–507. [Google Scholar]
  • 52.O'Neill R. D., Fillenz M., Albery W. J. Circadian changes in homovanillic acid and ascorbate levels in the rat striatum using microprocessor-controlled voltammetry. Neurosci. Lett. 1982;34:189–193. doi: 10.1016/0304-3940(82)90174-4. [DOI] [PubMed] [Google Scholar]
  • 53.Boutelle M. G., Svensson L., Fillenze M. Rapid changes in striatal ascorbate in response to tail-pinch monitored by contrast potential voltammetry. Neuroscience. 1989;30:11–17. doi: 10.1016/0306-4522(89)90349-7. [DOI] [PubMed] [Google Scholar]
  • 54.Stamford J. A., Kruk Z. L., Millar J. Regional differences in extracellular ascorbic acid levels in the rat brain determined by high speed cyclic voltammetry. Brain Res. 1984;299:289–295. doi: 10.1016/0006-8993(84)90710-8. [DOI] [PubMed] [Google Scholar]
  • 55.Mueller K. Repeated administration of high doses of amphetamine increases release of ascorbic acid in caudate but not nucleus accumbens. Brain Res. 1989;494:30–35. doi: 10.1016/0006-8993(89)90140-6. [DOI] [PubMed] [Google Scholar]

Articles from Neurochemical Research are provided here courtesy of Nature Publishing Group

RESOURCES