Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2011 May 5;58(3):538–542. doi: 10.1134/S1021443711030101

Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis

W D Li 1,2, J L Hou 1,2, W Q Wang 1,2,, X M Tang 1,2, C L Liu 3, D Xing 1,2
PMCID: PMC7089503  PMID: 32214752

Abstract

Two-year-old seedlings of licorice plant (Glycyrrhiza uralensis Fisch) were exposed to three degrees of water deficit, namely weak (60–70%), moderate (40–50%), and strong (20–30%) relative water content in soil, whereas control plants were grown in soil with 80–90% water content. Moderate and strong water deficit decreased the net photosynthetic rate, stomatal conductance, and biomass production. Water use efficiency and the root-to-shoot ratio increased significantly in response to water deficit, indicating a high tolerance to drought. Weak water deficit did not decrease root biomass production, but significantly increased the production of glycyrrhizic acid (by 89%) and liquiritin (by 125%) in the roots. Therefore, a weak water deficit can increase the yield of root medical compounds without negative effect on root growth.

Keywords: Glycyrrhiza uralensis, biomass production, gas exchange, glycyrrhizic acid, liquiritin, water deficit

Abbreviations

WC

water content

WUE

water use efficiency

Footnotes

This text was submitted by the authors in English.

References

  • 1.Zhao J., Li G., Wang B.M., Liu W., Nan T.G., Zhai Z.X., Li Z.H., Li Q.X. Development of a Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for the Analysis of Glycyrrhizic Acid. Anal. Bioanal. Chem. 2006;386:1735–1740. doi: 10.1007/s00216-006-0780-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Shen S.F., Chang Z.D., Liu J., Sun X.H., Hua X., Liu H.Z. Separation of Glycyrrhizic Acid and Liquiritin from Glycyrrhiza uralensis Fisch Extract by Three-Liquid-Phase Extraction Systems. Separat. Purific. Technol. 2007;53:216–223. doi: 10.1016/j.seppur.2006.07.003. [DOI] [Google Scholar]
  • 3.Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Glycyrrhizin, an Active Component of Liquorice Roots, and Replication of SARS-Associated Coronavirus. Lancet. 2003;361:2045–2046. doi: 10.1016/S0140-6736(03)13615-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Pan Y., Wu L.J., Yu Z.L. Effect of Salt and Drought Stress on Antioxidant Enzymes Activities and SOD Isoenzymes of Liquorice (Glycyrrhiza uralensis Fisch) Plant Growth Regul. 2006;49:157–165. doi: 10.1007/s10725-006-9101-y. [DOI] [Google Scholar]
  • 5.Hou J.L., Li W.D., Zheng Q.Y., Wang W.Q., Xiao B., Xing D. Effect of Low Light Intensity on Growth and Accumulation of Secondary Metabolites in Roots of Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 2010;38:160–168. doi: 10.1016/j.bse.2009.12.026. [DOI] [Google Scholar]
  • 6.Cai H., Biswas D.K., Shang A.Q., Zhao L.J., Li W.D. Photosynthetic Response to Water Stress and Changes in Metabolites. Jasminum sambac, Photosynthetica. 2007;45:503–509. doi: 10.1007/s11099-007-0087-0. [DOI] [Google Scholar]
  • 7.Li W.D., Biswas D.K., Xu H., Xu C.Q., Wang X.Z., Liu J.K., Jiang G.M. Photosynthetic Responses to Chromosome Doubling in Relation to Leaf Anatomy in Lonicera japonica Subjected to Water Stress. Funct. Plant Biol. 2009;36:783–792. doi: 10.1071/FP09022. [DOI] [PubMed] [Google Scholar]
  • 8.Zhang X., Wu N., Li C. Physiological and Growth Responses of Populus davidiana Ecotypes to Different Soil Water Contents. J. Arid Environ. 2005;60:567–579. doi: 10.1016/j.jaridenv.2004.07.008. [DOI] [Google Scholar]
  • 9.Bloch D., Hoffmann C.M., Märländer B. Impact of Water Supply on Photosynthesis, Water Use and Carbon Isotope Discrimination of Sugar Beet Genotypes. Eur. J. Agron. 2006;24:218–225. doi: 10.1016/j.eja.2005.08.004. [DOI] [Google Scholar]
  • 10.Liu Z.J. Drought-Induced In Vivo Synthesis of Camptothecin in Camptotheca acuminata Seedlings. Physiol. Plant. 2000;110:483–488. [Google Scholar]
  • 11.Jaleel C.A., Gopi R., Manivannan P., Gomathinayagam M., Sridharan R., Panneerselvam R. Antioxidant Potential and Indole Alkaloid Profile Variations with Water Deficits along Different Parts of Two Varieties of Catharanthus roseus. Colloid Surface, B. 2008;62:312–318. doi: 10.1016/j.colsurfb.2007.10.013. [DOI] [PubMed] [Google Scholar]
  • 12.Zhu Z.B., Liang Z.S., Han R.L., Wang X. Impact of Fertilization on Drought Response in the Medicinal Herb Bupleurum chinense DC.: Growth and Saikosaponin Production. Ind. Crops Prod. 2009;29:629–633. doi: 10.1016/j.indcrop.2008.08.002. [DOI] [Google Scholar]
  • 13.Hoft M., Verpoorte R., Beck E. Growth and Alkaloid Contents in Leaves of Tabernaemontana pachysiphon Stapf (Apocynaceae) as Influenced by Light Intensity, Water and Nutrient Supply. Oecologia. 1996;107:160–169. doi: 10.1007/BF00327899. [DOI] [PubMed] [Google Scholar]
  • 14.English-Loeb G., Stout M.J., Duffey S.S. Drought Stress in Tomatoes: Change in Plant Chemistry and Potential Nonlinear Consequences for Insect Herbivores. Oikos. 1997;79:456–468. doi: 10.2307/3546888. [DOI] [Google Scholar]
  • 15.Duan T.X., Yu M.M., Liu C.L., Ma C.H., Wang W.Q., Wei S.L. Simultaneous Determination of Glycyrrhizic Acid, Liquiritin and Fingerprint of Licorice by RP-HPLC. Chin. Tradit. Patent Med. 2006;28:161–165. [Google Scholar]
  • 16.Wu F.Z., Bao W.K., Li F.L., Wu N. Effects of Drought Stress and N Supply on the Growth, Biomass Partitioning and Water-Use Efficiency of Sophora davidii Seedlings. Environ. Exp. Bot. 2008;63:248–255. doi: 10.1016/j.envexpbot.2007.11.002. [DOI] [Google Scholar]

Articles from Russian Journal of Plant Physiology are provided here courtesy of Nature Publishing Group

RESOURCES