Abstract
In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.
References
- 1.Shaman J., Kohn M. Proc. Natl. Acad. Sci. 2009;106:3243. doi: 10.1073/pnas.0806852106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Zhong N., Zheng B., Li Y., Poon L., Xie Z., Chan K., Li P., Tan S., Chang Q., Xie J. The Lancet. 2003;362:1353. doi: 10.1016/S0140-6736(03)14630-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Breugelmans J.G., Zucs P., Porten K., Broll S., Niedrig M., Ammon A., Krause G. Emerging Infectious Diseases. 2004;10:1502. doi: 10.3201/eid1008.040093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Smith G.J., Vijaykrishna D., Bahl J., Lycett S.J., Worobey M., Pybus O.G., Ma S.K., Cheung C.L., Raghwani J., Bhatt S. Nature. 2009;459:1122. doi: 10.1038/nature08182. [DOI] [PubMed] [Google Scholar]
- 5.Neumann G., Noda T., Kawaoka Y. Nature. 2009;459:931. doi: 10.1038/nature08157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Mangili A., Gendreau M.A. The Lancet. 2005;365:989. doi: 10.1016/S0140-6736(05)71089-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Balcan D., Colizza V., Gonçalves B., Hu H., Ramasco J.J., Vespignani A. Proc. Natl. Acad. Sci. 2009;106:21484. doi: 10.1073/pnas.0906910106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Patz J.A., Epstein P.R., Burke T.A., Balbus J.M. Jama. 1996;275:217. doi: 10.1001/jama.1996.03530270057032. [DOI] [PubMed] [Google Scholar]
- 9.Lafferty K.D. Ecology. 2009;90:888. doi: 10.1890/08-0079.1. [DOI] [PubMed] [Google Scholar]
- 10.Trilla A., Trilla G., Daer C. Clinical infectious diseases. 2008;47:668. doi: 10.1086/590567. [DOI] [PubMed] [Google Scholar]
- 11.WHO Influenza, fact sheet n211. http://www.who.int/mediacentre/factsheets/2003/fs211/en/. Accessed: 2017-20
- 12.Barreca A.I., Shimshack J.P. Am. J. Epidemiol. 2012;176:S114. doi: 10.1093/aje/kws259. [DOI] [PubMed] [Google Scholar]
- 13.Fuhrmann C. Geography Compass. 2010;4:718. doi: 10.1111/j.1749-8198.2010.00343.x. [DOI] [Google Scholar]
- 14.Lowen A.C., Mubareka S., Steel J., Palese P. PLoS Pathogens. 2007;3:e151. doi: 10.1371/journal.ppat.0030151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Dowell S.F. Emerging infectious diseases. 2001;7:369. doi: 10.3201/eid0703.017301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Walther B.A., Ewald P.W. Biol. Rev. 2004;79:849. doi: 10.1017/S1464793104006475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Lofgren E., Fefferman N.H., Naumov Y.N., Gorski J., Naumova E.N. J. Virol. 2007;81:5429. doi: 10.1128/JVI.01680-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Guimera R., Mossa S., Turtschi A., Amaral L.N. Proc. Natl. Acad. Sci. 2005;102:7794. doi: 10.1073/pnas.0407994102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.M.J. Keeling, P. Rohani, Modeling infectious diseases in humans and animals (Princeton University Press, 2008)
- 20.Allen L., Brauer F., Van den Driessche P., Wu J. Lecture Notes in Mathematics. 2008;1945:81. doi: 10.1007/978-3-540-78911-6_3. [DOI] [Google Scholar]
- 21.Pastor-Satorras R., Vespignani A. Phys. Rev. Lett. 2001;86:3200. doi: 10.1103/PhysRevLett.86.3200. [DOI] [PubMed] [Google Scholar]
- 22.Brockmann D., Helbing D. Science. 2013;342:1337. doi: 10.1126/science.1245200. [DOI] [PubMed] [Google Scholar]
- 23.Schaffer F., Soergel M., Straube D. Arch. Virol. 1976;51:263. doi: 10.1007/BF01317930. [DOI] [PubMed] [Google Scholar]
- 24.Harper G. J. Hygiene. 1961;59:479. doi: 10.1017/S0022172400039176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Williams R., Rankin N., Smith T., Galler D., Seakins P. Critical care medicine. 1996;24:1920. doi: 10.1097/00003246-199611000-00025. [DOI] [PubMed] [Google Scholar]
- 26.Engvall K., Wickman P., Norbäck D. Indoor air. 2005;15:120. doi: 10.1111/j.1600-0668.2004.00325.x. [DOI] [PubMed] [Google Scholar]
- 27.Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J. Bull. Amer. Meteorol. Soc. 1996;77:437. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. [DOI] [Google Scholar]
- 28.Weedon G.P., Balsamo G., Bellouin N., Gomes S., Best M.J., Viterbo P. Water Resou. Res. 2014;50:7505. doi: 10.1002/2014WR015638. [DOI] [Google Scholar]
- 29.Viboud C., Alonso W.J., Simonsen L. PLoS Med. 2006;3:e89. doi: 10.1371/journal.pmed.0030089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Prachayangprecha S., Vichaiwattana P., Korkong S., Felber J.A., Poovorawan Y. SpringerPlus. 2015;4:356. doi: 10.1186/s40064-015-1149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]