Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005 Oct 14;13(1):59–72. doi: 10.1007/s11373-005-9035-9

Modular organization of SARS coronavirus nucleocapsid protein

Chung-ke Chang 1, Shih-Che Sue 1, Tsan-hung Yu 1, Chiu-Min Hsieh 1, Cheng-Kun Tsai 1,2, Yen-Chieh Chiang 3, Shin-jye Lee 1, Hsin-hao Hsiao 1, Wen-Jin Wu 1, Wei-Lun Chang 4, Chun-Hung Lin 4, Tai-huang Huang 1,2,
PMCID: PMC7089556  PMID: 16228284

Abstract

The SARS-CoV nucleocapsid (N) protein is a major antigen in severe acute respiratory syndrome. It binds to the viral RNA genome and forms the ribonucleoprotein core. The SARS-CoV N protein has also been suggested to be involved in other important functions in the viral life cycle. Here we show that the N protein consists of two non-interacting structural domains, the N-terminal RNA-binding domain (RBD) (residues 45–181) and the C-terminal dimerization domain (residues 248–365) (DD), surrounded by flexible linkers. The C-terminal domain exists exclusively as a dimer in solution. The flexible linkers are intrinsically disordered and represent potential interaction sites with other protein and protein-RNA partners. Bioinformatics reveal that other coronavirus N proteins could share the same modular organization. This study provides information on the domain structure partition of SARS-CoV N protein and insights into the differing roles of structured and disordered regions in coronavirus nucleocapsid proteins.

Key words: capsid protein, coronavirus, domain arrangement, intrinsically disordered protein, NMR, oligomerization, SARS

Acknowledgements

This work was supported in part by the Academia Sinica and by grants (NSC 92-2113-M-001-056 and NSC 92-2751-B-001-020-Y) (to THH) from the National Science Council of the Republic of China. The NMR spectra were obtained at the High-field Biomacromolecular NMR Core Facility, National Research Program for Genomic Medicine (NRPGM), Taiwan, Republic of China.

Footnotes

CK Chang and SC Sue contributed equally to this project.

References

  • 1.Lai M.M., Cavanagh D. The molecular biology of coronaviruses. Adv. Virus Res. 1997;48:1–100. doi: 10.1016/S0168-1702(96)01421-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Strauss J.H. and Strauss E.G. Viruses and Human Diseases. Academic Press, San Diego, 2002
  • 3.Mullan B.P., Davies G.T., Cutler R.S. Simulation of the economic impact of transmissible gastroenteritis on commercial pig production in Australia. Aust. Vet. J. 1994;71:151–154. doi: 10.1111/j.1751-0813.1994.tb03370.x. [DOI] [PubMed] [Google Scholar]
  • 4.Lai M.M.C. SARS virus: the beginning of the unraveling of a new coronavirus. J. Biomed. Sci. 2003;10:664–675. doi: 10.1007/BF02256318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gorbalenya A.E., Snijder E.J., Spaan W.J. Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J. Virol. 2004;78:7863–7866. doi: 10.1128/JVI.78.15.7863-7866.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Rota P.A., et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
  • 7.Marra M.A., et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. doi: 10.1126/science.1085953. [DOI] [PubMed] [Google Scholar]
  • 8.Snijder E.J., et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003;331:991–1004. doi: 10.1016/S0022-2836(03)00865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Ng M.L., Tan S.H., See E.E., Ooi E.E., Ling A.E. Early events of SARS coronavirus infection in vero cells. J. Med. Virol. 2003;71:323–331. doi: 10.1002/jmv.10499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.He Q., et al. Development of a Western blot assay for detection of antibodies against coronavirus causing severe acute respiratory syndrome. Clin. Diagn. Lab. Immunol. 2004;11:417–422. doi: 10.1128/CDLI.11.2.417-422.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lin Y., et al. Identification of an epitope of SARS-coronavirus nucleocapsid protein. Cell Res. 2003;13:141–145. doi: 10.1038/sj.cr.7290158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Parker M.M., Masters P.S. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology. 1990;179:463–468. doi: 10.1016/0042-6822(90)90316-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Masters P.S. Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus. Arch. Virol. 1992;125:141–160. doi: 10.1007/BF01309634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Surjit M., Liu B., Kumar P., Chow V.T., Lal S.K. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem. Biophys. Res. Commun. 2004;317:1030–1036. doi: 10.1016/j.bbrc.2004.03.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Yu I.M., Gustafson C.L., Diao J, Burgner J.W., II, Li Z., Zhang J., Chen J. Recombinant Severe Acute Respiratory Syndrome (SARS) Coronavirus Nucleocapsid protein forms a dimer through its C-terminal domain. J. Biol. Chem. 2005;280:23280–23286. doi: 10.1074/jbc.M501015200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.He R., et al. Characterization of protein–protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 2004;105:121–125. doi: 10.1016/j.virusres.2004.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Luo H., Chen Q., Chen J., Chen K., Shen X., Jiang H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 2005;579:2623–2628. doi: 10.1016/j.febslet.2005.03.080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huang Q., et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry. 2004;43:6059–6063. doi: 10.1021/bi036155b. [DOI] [PubMed] [Google Scholar]
  • 19.Thompson J., Gibson T., Plewniak F., Jeanmougin F., Higgins D. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Cuff J., Clamp M., Siddiqui A., Finlay M., Barton G. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14:892–893. doi: 10.1093/bioinformatics/14.10.892. [DOI] [PubMed] [Google Scholar]
  • 21.Romero P., Obradovic Z., Dunker A.K. Identifying disordered regions in proteins from amino acid sequences. Proc. I.E.E.E. Int. Conf. Neural Networks. 1997;1:90–95. [Google Scholar]
  • 22.Iakoucheva L.M., et al. Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Sci. 2001;10:560–571. doi: 10.1110/ps.29401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Iakoucheva L.M., Brown C.J., Lawson J.D., Obradovic Z., Dunker A.K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 2002;323:573–584. doi: 10.1016/S0022-2836(02)00969-5. [DOI] [PubMed] [Google Scholar]
  • 24.Yeh S.-H., et al. Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. PNAS. 2004;101:2542–2547. doi: 10.1073/pnas.0307904100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sue S.C., Chang J.Y., Lee S.C., Wu W.G., Huang T.-h. Solution structure and heparin binding site of Hepatoma-derived growth factors. J. Mol. Biol. 2004;343:1365–1377. doi: 10.1016/j.jmb.2004.09.014. [DOI] [PubMed] [Google Scholar]
  • 26.Lin T.H., Chen C.P., Huang R.F., Lee Y.L., Shaw J.F., Huang T.H. Multinuclear NMR resonance assignments and the secondary structure of Escherichia coli thioesterase/protease I: A member of a new subclass of lipolytic enzymes. J. Biomol. NMR. 1998;11:363–380. doi: 10.1023/A:1008226515482. [DOI] [PubMed] [Google Scholar]
  • 27.Hwang T.L., ven Zijl P.C.M., Mori S. Accurate quantitation of water-amide exchange rates using the phase-modulated CLEAN chemical exchange (CLEANEX-PM) approach with fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR. 1998;11:221–226. doi: 10.1023/A:1008276004875. [DOI] [PubMed] [Google Scholar]
  • 28.Hwang T.L., Shaka A.J. Multiple-pulse mixing sequences that selectively enhance chemical exchange or cross-relaxation peaks in high-resolution NMR spectra. J. Magn. Reson. 1998;135:280–287. doi: 10.1006/jmre.1998.1598. [DOI] [PubMed] [Google Scholar]
  • 29.Wishart D.S., Bigam C.G., Yao J., Abildgaard F., Dyson H.J., Oldfield E., Markley J.L., Sykes B.D. 1H, 13C, 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR. 1995;6:135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  • 30.Garcia P., Serrano L., Rico M., Bruix M. An NMR view of the folding process of a CheY mutant at the residue level. Structure (Camb) 2002;10:1173–1185. doi: 10.1016/S0969-2126(02)00804-3. [DOI] [PubMed] [Google Scholar]
  • 31.Wang Y., Zhang X. The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Virology. 1999;265:96–109. doi: 10.1006/viro.1999.0025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Nelson G.W., Stohlman S.A. Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. J. Gen. Virol. 1993;74(Pt 9):1975–1979. doi: 10.1099/0022-1317-74-9-1975. [DOI] [PubMed] [Google Scholar]
  • 33.He R., et al. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 2004;316:476–483. doi: 10.1016/j.bbrc.2004.02.074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Luo H., et al. In vitro biochemical and thermodynamic characterization of nucleocapsid protein of SARS. Biophys. Chem. 2004;112:15–25. doi: 10.1016/j.bpc.2004.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Luo C., et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem. Biophys. Res. Commun. 2004;321:557–565. doi: 10.1016/j.bbrc.2004.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Romero P., Obradovic Z., Li X., Garner E.C., Brown C.J., Dunker A.K. Sequence complexity of disordered protein. PROTEINS: Struct. Funct. Gen. 2001;42:38–48. doi: 10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  • 37.Dyson H.J., Wright P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 2002;12:54–60. doi: 10.1016/S0959-440X(02)00289-0. [DOI] [PubMed] [Google Scholar]
  • 38.Surjit M., Kumar R., Mishra R.N., Reddy M.K., Chow V.T.K., Lal S.K. The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J. Virol. 2005;79:11476–11486. doi: 10.1128/JVI.79.17.11476-11486.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Yeakley J.M., Tronchere H., Olesen J., Dyck J.A., Wang H.Y., Fu X.D. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J. Cell Biol. 1999;145:447–455. doi: 10.1083/jcb.145.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Chen H., Gill A., Dove B.K., Emmett S.R., Kemp C.F., Ritchie M.A., Dee M., Hiscox J.A. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J. Virol. 2005;79:1164–1179. doi: 10.1128/JVI.79.2.1164-1179.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Calvo E., Escors D., Lopez J.A., Gonzalez J.M., Alvarez A., Arza E., Enjuanes L. Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J. Gen. Virol. 2005;86:2255–2267. doi: 10.1099/vir.0.80975-0. [DOI] [PubMed] [Google Scholar]
  • 42.Karlin D., Ferron F., Canard B., Longhi S. Structural disorder and modular organization in Paramyxovirinae N and P. J. Gen. Virol. 2003;84:3239–3252. doi: 10.1099/vir.0.19451-0. [DOI] [PubMed] [Google Scholar]
  • 43.Dale G.E., Oefner C., D’Arcy A. The protein as a variable in protein crystallization. J. Struct. Biol. 2003;142:88–97. doi: 10.1016/S1047-8477(03)00041-8. [DOI] [PubMed] [Google Scholar]
  • 44.Tang T.K., et al. Biochemical and immunological studies of nucleocapsid proteins of severe acute respiratory syndrome and 229E human coronaviruses. Proteomics. 2005;5:925–937. doi: 10.1002/pmic.200401204. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biomedical Science are provided here courtesy of Nature Publishing Group

RESOURCES