Abstract
Paper-based analytical devices (PADs) have been widely used in many fields because they are affordable and portable. For reproducible quantitative analysis, it is crucial to strongly immobilize proteins on PADs. Conventional techniques for immobilizing proteins on PADs are based on physical adsorption, but proteins can be easily removed by weak physical forces. Therefore, it is difficult to ensure the reproducibility of the analytical results of PADs using physical adsorption. To overcome this limitation, in this study, we showed a method of covalent binding of proteins to cellulose paper. This method consists of three steps, which include periodate oxidation of paper, the formation of a Schiff base, and reductive amination. We identified aldehyde and imine groups formed on paper using FT-IR analysis. This covalent bonding approach enhanced the binding force and binding capacity of proteins. We confirmed the activity of an immobilized antibody through a sandwich immunoassay. We expect that this immobilization method will contribute to the commercialization of PADs with high reproducibility and sensitivity.
Keywords: cellulose, immobilization, periodate oxidation, covalent binding, protein
Contributor Information
Seung Pil Pack, Phone: +82-44-860-1419, FAX: +82-44-860-1598, Email: spack@korea.ac.kr.
Chang-Soo Lee, Phone: +82-42-821-5896, FAX: +82-42-822-8995, Email: rhadum@cnu.ac.kr.
References
- 1.Weigl B., Domingo G., Labarre P., Gerlach J. Towards non–and minimally instrumented, microfluidics–based diagnostic devices. Lab on a Chip. 2008;8:1999–2014. doi: 10.1039/b811314a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Martinez A. W., Phillips S. T., Whitesides G. M., Carrilho E. Diagnostics for the developing world: microfluidic paper–based analytical devices. Analytical Chemistry. 2010;82:3–10. doi: 10.1021/ac9013989. [DOI] [PubMed] [Google Scholar]
- 3.Mabey D., Peeling R. W., Ustianowski A., Perkins M. D. Diagnostics for the developing world. Nature Reviews Microbiology. 2004;2:231–240. doi: 10.1038/nrmicro841. [DOI] [PubMed] [Google Scholar]
- 4.Mao X., Huang T. J. Microfluidic diagnostics for the developing world. Lab on a Chip. 2012;12:1412–1416. doi: 10.1039/c2lc90022j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Yang J. M., Kim K. R., Kim C. S. Biosensor for Rapid and Sensitive Detection of Influenza Virus. Biotechnol. Bioproc. E. 2018;23:371–382. doi: 10.1007/s12257-018-0220-x. [DOI] [Google Scholar]
- 6.Zhao Z., Zhang J., Xu M. L., Liu Z. P., Wang H., Liu M., Yu Y. Y., Sun L., Zhang H., Wu H. Y. A rapidly new–typed detection of norovirus based on F0F1–ATPase molecular motor biosensor. Biotechnol. Bioproc. E. 2016;21:128–133. doi: 10.1007/s12257-015-0384-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Sobhan A., Oh J. H., Park M. K., Kim S. W., Park C., Lee J. Single walled carbon nanotube based biosensor for detection of peanut allergy–inducing protein ara h1. Korean Journal of Chemical Engineering. 2018;35:172–178. doi: 10.1007/s11814-017-0259-y. [DOI] [Google Scholar]
- 8.von Lode P. Point–of–care immunotesting: approaching the analytical performance of central laboratory methods. Clinical Biochemistry. 2005;38:591–606. doi: 10.1016/j.clinbiochem.2005.03.008. [DOI] [PubMed] [Google Scholar]
- 9.Peeling R. W., Holmes K. K., Mabey D., Ronald A. Sexually Transmitted Infections. 2006. Rapid tests for sexually transmitted infections (STIs): the way forward; pp. v1–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Yetisen A. K., Akram M. S., Lowe C. R. Paper–based microfluidic point–of–care diagnostic devices. Lab on a Chip. 2013;13:2210–2251. doi: 10.1039/c3lc50169h. [DOI] [PubMed] [Google Scholar]
- 11.Sackmann E. K., Fulton A. L., Beebe D. J. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–189. doi: 10.1038/nature13118. [DOI] [PubMed] [Google Scholar]
- 12.Cate D. M., Adkins J. A., Mettakoonpitak J., Henry C. S. Recent developments in paper–based microfluidic devices. Analytical Chemistry. 2015;87:19–41. doi: 10.1021/ac503968p. [DOI] [PubMed] [Google Scholar]
- 13.Han S. I., Hwang K. S., Kwak R., Lee J. H. Microfluidic paper–based biomolecule preconcentrator based on ion concentration polarization. Lab on a Chip. 2016;16:2219–2227. doi: 10.1039/C6LC00499G. [DOI] [PubMed] [Google Scholar]
- 14.Yu L., Shi Z. Z. Microfluidic paper–based analytical devices fabricated by low–cost photolithography and embossing of Parafilm(R) Lab on a Chip. 2015;15:1642–1645. doi: 10.1039/C5LC00044K. [DOI] [PubMed] [Google Scholar]
- 15.Lee C. H., Tian L., Singamaneni S. Paper–based SERS swab for rapid trace detection on real–world surfaces. ACS Applied Materials & Interfaces. 2010;2:3429–3435. doi: 10.1021/am1009875. [DOI] [PubMed] [Google Scholar]
- 16.Dungchai W., Chailapakul O., Henry C. S. Electrochemical detection for paper–based microfluidics. Analytical Chemistry. 2009;81:5821–5826. doi: 10.1021/ac9007573. [DOI] [PubMed] [Google Scholar]
- 17.Lessing J., Glavan A. C., Walker S. B., Keplinger C., Lewis J. A., Whitesides G. M. Inkjet printing of conductive inks with high lateral resolution on omniphobic “R(F) paper” for paper–based electronics and MEMS. Advanced Materials. 2014;26:4677–4682. doi: 10.1002/adma.201401053. [DOI] [PubMed] [Google Scholar]
- 18.Carrilho E., Martinez A. W., Whitesides G. M. Understanding wax printing: a simple micropatterning process for paper–based microfluidics. Analytical Chemistry. 2009;81:7091–7095. doi: 10.1021/ac901071p. [DOI] [PubMed] [Google Scholar]
- 19.Noor M. O., Shahmuradyan A., Krull U. J. Paperbased solid–phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Analytical Chemistry. 2013;85:1860–1867. doi: 10.1021/ac3032383. [DOI] [PubMed] [Google Scholar]
- 20.Parolo C., Merkoci A. Paper–based nanobiosensors for diagnostics. Chemical Society Reviews. 2013;42:450–457. doi: 10.1039/C2CS35255A. [DOI] [PubMed] [Google Scholar]
- 21.Jeong S. G., Kim J., Nam J. O., Song Y. S., Lee C. S. Paper–based analytical device for quantitative urinalysis. International Neurourology Journal. 2013;17:155–161. doi: 10.5213/inj.2013.17.4.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Taudte R. V., Beavis A., Wilson–Wilde L., Roux C., Doble P., Blanes L. A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured waxprinted muPADs. Lab on a Chip. 2013;13:4164–4172. doi: 10.1039/c3lc50609f. [DOI] [PubMed] [Google Scholar]
- 23.Jeong S. G., Kim J., Jin S. H., Park K. S., Lee C. S. Flow control in paper–based microfluidic device for automatic multistep assays: A focused minireview. Korean Journal of Chemical Engineering. 2016;33:2761–2770. doi: 10.1007/s11814-016-0161-z. [DOI] [Google Scholar]
- 24.Yang Y., Noviana E., Nguyen M. P., Geiss B. J., Dandy D. S., Henry C. S. Paper–based microfluidic devices: Emerging themes and applications. Analytical Chemistry. 2017;89:71–91. doi: 10.1021/acs.analchem.6b04581. [DOI] [PubMed] [Google Scholar]
- 25.Meredith N. A., Quinn C., Cate D. M., Reilly T. H., Volckens J., Henry C. S. Paper–based analytical devices for environmental analysis. The Analyst. 2016;141:1874–1887. doi: 10.1039/C5AN02572A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Yamada K., Henares T. G., Suzuki K., Citterio D. Paper–based inkjet–printed microfluidic analytical devices. Angewandte Chemie. 2015;54:5294–5310. doi: 10.1002/anie.201411508. [DOI] [PubMed] [Google Scholar]
- 27.Credou J., Volland H., Dano J., Berthelot T. A onestep and biocompatible cellulose functionalization for covalent antibody immobilization on immunoassay membranes. Journal of Materials Chemistry B. 2013;1:3277–3286. doi: 10.1039/c3tb20380h. [DOI] [PubMed] [Google Scholar]
- 28.Jarujamrus P., Tian J., Li X., Siripinyanond A., Shiowatana J., Shen W. Mechanisms of red blood cells agglutination in antibody–treated paper. The Analyst. 2012;137:2205–2210. doi: 10.1039/c2an15798e. [DOI] [PubMed] [Google Scholar]
- 29.Jeong S. G., Lee S. H., Choi C. H., Kim J., Lee C. S. Toward instrument–free digital measurements: a three–dimensional microfluidic device fabricated in a single sheet of paper by doublesided printing and lamination. Lab on a Chip. 2015;15:1188–1194. doi: 10.1039/C4LC01382D. [DOI] [PubMed] [Google Scholar]
- 30.Cheng C. M., Martinez A. W., Gong J., Mace C. R., Phillips S. T., Carrilho E., Mirica K. A., Whitesides G. M. Paperbased ELISA. Angewandte Chemie. 2010;49:4771–4774. doi: 10.1002/anie.201001005. [DOI] [PubMed] [Google Scholar]
- 31.Kim U. J., Kuga S., Wada M., Okano T., Kondo T. Periodate oxidation of crystalline cellulose. Biomacromolecules. 2000;1:488–492. doi: 10.1021/bm0000337. [DOI] [PubMed] [Google Scholar]
- 32.Maekawa E., and, Koshijima T. Properties of 2,3–dicarboxy cellulose combined with various metallic ions. Journal of Applied Polymer Science. 1984;29:2289–2297. doi: 10.1002/app.1984.070290705. [DOI] [Google Scholar]
- 33.Bruneel D., Schacht E. Chemical modification of pullulan: 1. Periodate oxidation. Polymer. 1993;34:2628–2632. [Google Scholar]
- 34.Alonso D., Gimeno M., Sepulveda–Sanchez J. D., Shirai K. Chitosan–based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non–toxic procedure. Carbohydrate Research. 2010;345:854–859. doi: 10.1016/j.carres.2010.01.018. [DOI] [PubMed] [Google Scholar]
- 35.Abdel–Magid A. F., Carson K. G., Harris B. D., Maryanoff C. A., Shah R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures(1). The Journal of Organic Chemistry. 1996;61:3849–3862. doi: 10.1021/jo960057x. [DOI] [PubMed] [Google Scholar]
- 36.Cordes E. H., Jencks W. P. On the mechanism of schiff base formation and hydrolysis. Journal of the American Chemical Society. 1962;84:832–837. doi: 10.1021/ja00864a031. [DOI] [Google Scholar]
- 37.Lindh J., Carlsson D. O., Stromme M., Mihranyan A. Convenient one–pot formation of 2,3–dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules. 2014;15:1928–1932. doi: 10.1021/bm5002944. [DOI] [PubMed] [Google Scholar]
- 38.Potthast A., Kostic M., Schiehser S., Kosma P., Rosenau T. Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles. Holzforschung. 2007;61:662–667. doi: 10.1515/HF.2007.099. [DOI] [Google Scholar]
- 39.Wang S., Ge L., Song X., Yan M., Ge S., Yu J., Zeng F. Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. The Analyst. 2012;137:3821–3827. doi: 10.1039/c2an35266d. [DOI] [PubMed] [Google Scholar]
- 40.Josephy P. D. Oxidative activation of benzidine and its derivatives by peroxidases. Environmental Health Perspectives. 1985;64:171–178. doi: 10.1289/ehp.8564171. [DOI] [PMC free article] [PubMed] [Google Scholar]
