Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2002;20(2):131–136. doi: 10.1385/MB:20:2:131

Production of HIV-1 p24 protein in transgenic tobacco plants

G Gary Zhang 1,, Lauren Rodrigues 2, Benjamin Rovinski 2, K Andrew White 3
PMCID: PMC7090486  PMID: 11876469

Abstract

The production of antigens for vaccines in plants has the potential as a safe and cost-effective alternative to traditional production systems. Toward the development of a plant-based expression system for the production of human immunodeficiency virus type I (HIV-1) p24 capsid protein, the p24 gene was introduced into the genome of tobacco plants using Agrobacterium tumefaciens-mediated gene transfer. Southern blot analyses confirmed the presence of the p24 coding sequence within the genome of transgenic lines. Western blot analysis of protein extracts from transgenic plants identified plant-expressed p24 protein that cross-reacted with a p24-specific monoclonal antibody, thus confirming the maintenance of antigenicity. Quantification of the p24 protein using enzyme-linked immunosorbent assay (ELISA) estimated yields of approx 3.5 mg per g of soluble leaf protein. Similar accumulation levels of p24 were also detected in T1 plants, confirming that the p24 gene is transmitted stably. Our results indicate that plant-based transgenic expression represents a viable means of producing p24 for the development of HIV vaccine and for use in HIV diagnostic procedures.

Index Entries: Human immunodeficiency virus type I (HIV-1), p24 capsid protein (p24), plant-based expression, plant transformation, protein expression, vaccine antigen

References

  • 1.Moffat A. S. Exploring transgenic plants as a new vaccine source. Science. 1995;268:658–659. doi: 10.1126/science.7732373. [DOI] [PubMed] [Google Scholar]
  • 2.Arakawa T., Langridge W. H. R. Plants are not just passive creatures. Nature Med. 1998;4:550–551. doi: 10.1038/nm0598-550. [DOI] [PubMed] [Google Scholar]
  • 3.Ma J. K-C., Vine N. D. Plant expression systems for the production of vaccines. Curr. Top. Microbiol. Immunol. 1999;236:275–292. doi: 10.1007/978-3-642-59951-4_14. [DOI] [PubMed] [Google Scholar]
  • 4.Mason H. S., Arntzen C. J. Transgenic plants as vaccine production systems. TIBTech. 1995;13:388–392. doi: 10.1016/S0167-7799(00)88986-6. [DOI] [PubMed] [Google Scholar]
  • 5.Mason H. S., Lam D. M-K., Arntzen C. J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA. 1992;89:11745–11749. doi: 10.1073/pnas.89.24.11745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Thanavala Y., Yang Y. F., Lyons P., Mason H. S., Arntzen C. Immunogenenicity of transgenic plant-derived hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA. 1995;92:3358–3361. doi: 10.1073/pnas.92.8.3358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mason H. S., Ball J. M., Shi J-J., Jian X., Estes M. K., Arntzen C. J. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA. 1996;93:5335–5340. doi: 10.1073/pnas.93.11.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Haq T. A., Mason H. S., Clements J. D., Arntzen C. J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268:714–715. doi: 10.1126/science.7732379. [DOI] [PubMed] [Google Scholar]
  • 9.Tacket C. O., Mason H. S., Lonsonsky G., Clements J. D., Levine M. M., Artzen C. J. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nature Med. 1998;4:607–609. doi: 10.1038/nm0598-607. [DOI] [PubMed] [Google Scholar]
  • 10.Arakawa T., Chong D. K. X., Langridge W. H. R. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotech. 1998;16:292–297. doi: 10.1038/nbt0398-292. [DOI] [PubMed] [Google Scholar]
  • 11.Beachy R. N., Fitchen J. H., Hein M. B. Use of plant viruses for delivery of vaccine epitopes. Ann. N. Y. Acad. Sci. 1996;792:434–439. doi: 10.1111/j.1749-6632.1996.tb32489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Spall V. E., Porta C., Taylor K. M., Lin T., Johnson J. E., Lomonossoff G. P. Antigen Expression on the Surface of a Plant Virus for Vaccine Production. In: Shewry P. R., Napier J. A., Davis P.J., editors. Engineering Crop Plant for Industrial End Uses. London: Portland; 1997. pp. 35–46. [Google Scholar]
  • 13.Lomonossoff G. P., Hamilton W. D. Cowpea mosaic virus-based vaccines. Curr. Top. Microbiol. Immunol. 1999;240:177–189. doi: 10.1007/978-3-642-60234-4_9. [DOI] [PubMed] [Google Scholar]
  • 14.Spector S. A., Kennedy C., McCutchan J. A., Straube R. G., Connor J. D., Richman D. D. The antiviral effect of zidovudine and ribavirin in clinical trails and the used of p24 antigen levels as a virologic marker. J. Infect. Dis. 1989;159:822–828. doi: 10.1093/infdis/159.5.822. [DOI] [PubMed] [Google Scholar]
  • 15.Montroni M., Silvestri G., Butini L., Bartocci C., Regnery C., Danieli G. p24 antigenaemia as a predictor of good immunological responsiveness to zidovudine therapy in asymptomatic HIV infection (letter) AIDS. 1992;6:338–339. doi: 10.1097/00002030-199203000-00019. [DOI] [PubMed] [Google Scholar]
  • 16.Reddy M. M., Winger E. E., Hargrove D., McHugh T., McKinley G. F., Grieco M. H. An improved method for monitoring efficacy of antiretroviral therapy in HIV-infected individuals; a highly sensitive HIV p24 antigen assay. J. Clinic. Lab. Anal. 1992;6:125–129. doi: 10.1002/jcla.1860060305. [DOI] [PubMed] [Google Scholar]
  • 17.Martin S. J., Vyakarnam A., Cheingsong-Popov R., et al. Immunization of human HIV-seronegative volunteers with recombinant p17/p24: Ty virus-like particles elicits HIV-1 p24-specific cellular and humoral immune responses. AIDS. 1993;7:1315–1323. doi: 10.1097/00002030-199310000-00003. [DOI] [PubMed] [Google Scholar]
  • 18.Benson E. M., Clarkson J., Law M., et al. Therapeutic vaccination with p24-VLP and zidovudine augments HIV-specific cytotoxic T lymphocyte activity in asymptomatic HIV-infected individuals. AIDS Res. Human Retroviruses. 1999;15:105–113. doi: 10.1089/088922299311538. [DOI] [PubMed] [Google Scholar]
  • 19.Zunich K. M., Lane H. C., Davey R. T., et al. Phase I/II studies of the toxicity and immunogenicity of recombinant gp160 and p24 vaccines in HIV-infected individuals. AIDS Res. Human Retorviruses. 1992;8:1335–1335. doi: 10.1089/aid.1992.8.1335. [DOI] [PubMed] [Google Scholar]
  • 20.Lefrere J-J., Courouce A-M., Rouger P., Duedari N., Elghouzzi M-H. P24 antigen and HIV screening. Lancet. 1992;339:999–1000. doi: 10.1016/0140-6736(92)91585-V. [DOI] [PubMed] [Google Scholar]
  • 21.Zhang G., Leung C., Murdin L., Rovinski B., White K. A. In Planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector. Mol. Biotechnol. 2000;14:99–107. doi: 10.1385/MB:14:2:99. [DOI] [PubMed] [Google Scholar]
  • 22.Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  • 23.Fraley R. T., Rogers S. C., Horsch R. B., et al. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. 1983;80:4803–4807. doi: 10.1073/pnas.80.15.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Fedoroff N., Mauvais J., Chaleff D. Molecular studies on mutations at the shrunken locus in maize caused by the controlling element Ds. J. Mol. App. Genet. 1983;2:11–29. [PubMed] [Google Scholar]
  • 25.Chong D. K. X., Roberts W., Arakawa T., et al. Expression of the Human milk protein b-casein in transgenic potato plants. Transgenic Res. 1997;6:289–296. doi: 10.1023/A:1018410712288. [DOI] [PubMed] [Google Scholar]
  • 26.Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 27.Alvord W. G., Drummond J. E., Arthur L. O., et al. A method for predicting individual HIV infection status in the absence of clinical information. AIDS Res. Human Retroviruses. 1988;4:295–304. doi: 10.1089/aid.1988.4.295. [DOI] [PubMed] [Google Scholar]
  • 28.Persson R. H., Cao S. X., Cates G., Yao F. L., Klein M. H., Rovinski B. Modifications of HIV-1 retrovirus-like particles to enhance safety and immunogenicity. Biologicals. 1998;26:255–265. doi: 10.1006/biol.1998.0142. [DOI] [PubMed] [Google Scholar]
  • 29.Hansen J. E., Lund O., Rapacki K., Brunak S. O-glycbase version 2.0 — A revised database of O-glycosylated proteins. Nucl. Acids Res. 1997;25:278–282. doi: 10.1093/nar/25.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular Biotechnology are provided here courtesy of Nature Publishing Group

RESOURCES