Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2018 Nov 19;57(2):113–121. doi: 10.1007/s12275-019-8549-1

Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves

Ja-Young Jang 1,#, Suhee Kim 2,#, Min-Sung Kwon 1, Jieun Lee 1, Do-Hyeon Yu 3, Ru-Hui Song 4, Hak-Jong Choi 1,, Jinho Park 4,
PMCID: PMC7090552  PMID: 30456757

Abstract

Diarrhea is a fatal disease to neonatal calves, and rotavirus is the main pathogen associated with neonatal calf diarrhea. Although previous studies have reported that the gut microbiota is changed in calves during diarrhea, less is known about whether rotavirus infection alters the structure of the gut microbiota. Here, we characterized fecal microbial communities and identified possible relationships between the gut microbiota profiles and physiological parameters. Five fecal specimens of rotavirus-infected calves from 1 to 30 days after birth and five fecal specimens of age-matched healthy calves were used for the microbial community analysis using the Illumina MiSeq sequencer. Rotavirus infection was associated with reduced rotavirus infection significantly reduced the richness and diversity of the bacterial community. Weighted unique fraction metric analysis exhibited significant differences in community membership and structure between healthy and rotavirus-infected calves. Based on relative abundance analysis and linear discriminant analysis effect size, we found that the representative genera from Lactobacillus, Subdoligranulum, Blautia, and Bacteroides were closely related to healthy calves, while the genera Escherichia and Clostridium were closely affiliated to rotavirus-infected calves. Furthermore, canonical correlation analysis and Pearson correlation coefficient results revealed that the increased relative abundances of Lactobacillus, Subdoligranulum, and Bacteroides were correlated with normal levels of physiological characteristics such as white blood cells, blood urea nitrogen, serum amyloid protein A, and glucose concentration in serum. These results suggest that rotavirus infection alters the structure of the gut microbiota, correlating changes in physiological parameters. This study provides new information on the relationship between gut microbiota and the physiological parameters of rotavirus-mediated diarrheic calves.

Keywords: diarrhea, rotavirus, gut microbiota, physiological parameters

Footnotes

These authors contributed equally to this work.

Contributor Information

Hak-Jong Choi, Phone: +82-62-610-1729, FAX: +82-62-610-1850, Email: hjchoi@wikim.re.kr.

Jinho Park, Phone: +82-63-850-0949, FAX: +82-63-850-0910, Email: jpark@jbnu.ac.kr.

References

  1. Ammar S.S., Mokhtaria K., Tahar B.B., Amar A.A., Redha B.A., Yuva B., Mohamed H.S., Abdellatif N., Laid B. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria. Asian Pac. J. Trop. Biomed. 2014;4:S318–S322. doi: 10.12980/APJTB.4.2014C778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cho Y.I., Kim W.I., Liu S., Kinyon J.M., Yoon K.J. Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J. Vet. Diagn. Invest. 2010;22:509–517. doi: 10.1177/104063871002200403. [DOI] [PubMed] [Google Scholar]
  3. Cho Y.I., Yoon K.J. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014;15:1–17. doi: 10.4142/jvs.2014.15.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edrington T.S., Dowd S.E., Farrow R.F., Hagevoort G.R., Callaway T.R., Anderson R.C., Nisbet D.J. Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk. J. Dairy Sci. 2012;95:4519–4525. doi: 10.3168/jds.2011-5119. [DOI] [PubMed] [Google Scholar]
  5. Gomez D.E., Arroyo L.G., Costa M.C., Viel L., Weese J.S. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Intern. Med. 2017;31:928–939. doi: 10.1111/jvim.14695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gulliksen S.M., Jor E., Lie K.I., Hamnes I.S., Loken T., Akerstedt J., Osteras O. Enteropathogens and risk factors for diarrhea in Norwegian dairy calves. J. Dairy Sci. 2009;92:5057–5066. doi: 10.3168/jds.2009-2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hur T.Y., Jung Y.H., Choe C.Y., Cho Y.I., Kang S.J., Lee H.J., Ki K.S., Baek K.S., Suh G.H. The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea. Korean J. Vet. Res. 2013;53:103–108. doi: 10.14405/kjvr.2013.53.2.103. [DOI] [Google Scholar]
  8. Izzo M.M., Kirkland P.D., Mohler V.L., Perkins N.R., Gunn A.A., House J.K. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Aust. Vet. J. 2011;89:167–173. doi: 10.1111/j.1751-0813.2011.00692.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapikian A.Z., Chanock R.M. Rotaviruses. In: Straus S.E., editor. Fields Virology. Philadelphia, USA: Lippincott-Raven; 1996. pp. 1657–1708. [Google Scholar]
  10. Klein-Jobstl D., Schornsteiner E., Mann E., Wagner M., Drillich M., Schmitz-Esser S. Pyrosequencing reveals diverse fecal microbiota in simmental calves during early development. Front. Microbiol. 2014;5:622. doi: 10.3389/fmicb.2014.00622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kostic A.D., Xavier R.J., Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–1499. doi: 10.1053/j.gastro.2014.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li R.W., Connor E.E., Li C., Baldwin Vi R.L., Sparks M.E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 2012;14:129–139. doi: 10.1111/j.1462-2920.2011.02543.x. [DOI] [PubMed] [Google Scholar]
  13. Lukas F., Koppova I., Kudrna V., Kopecny J. Postnatal development of bacterial population in the gastrointestinal tract of calves. Folia Microbiol. 2007;52:99–104. doi: 10.1007/BF02932147. [DOI] [PubMed] [Google Scholar]
  14. Margreiter M., Ludl K., Phleps W., Kaehler S.T. Therapeutic value of a Lactobacillus gasseri and Bifidobacterium longum fixed bacterium combination in acute diarrhea: a randomized, double-blind, controlled clinical trial. Int. J. Clin. Pharmacol. Ther. 2006;44:207–215. doi: 10.5414/CPP44207. [DOI] [PubMed] [Google Scholar]
  15. Millar H.R., Simpson J.G., Stalker A.L. An evaluation of the heat precipitation method for plasma fibrinogen estimation. J. Clin. Pathol. 1971;24:827–830. doi: 10.1136/jcp.24.9.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oikonomou G., Teixeira A.G., Foditsch C., Bicalho M.L., Machado V.S., Bicalho R.C. Fecal microbial diversity in preweaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One. 2013;8:e63157. doi: 10.1371/journal.pone.0063157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I., van den Brandt P.A., Stobberingh E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824. [DOI] [PubMed] [Google Scholar]
  18. Rolhion N., Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016;371:20150504. doi: 10.1098/rstb.2015.0504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Singh P., Teal T.K., Marsh T.L., Tiedje J.M., Mosci R., Jernigan K., Zell A., Newton D.W., Salimnia H., Lephart P., et al. Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome. 2015;3:45. doi: 10.1186/s40168-015-0109-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Uetake K. Newborn calf welfare: a review focusing on mortality rates. Animal Sci. J. 2013;84:101–105. doi: 10.1111/asj.12019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. USDA. 2008. Dairy 2007 Part II: changes in the US dairy cattle industry, 1991–2007. Fort Collins: USDA-APHIS-VS, CEAH, 57–61.
  22. Uyeno Y., Sekiguchi Y., Kamagata Y. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett. Appl. Microbiol. 2010;51:570–577. doi: 10.1111/j.1472-765X.2010.02937.x. [DOI] [PubMed] [Google Scholar]
  23. Wotzka S.Y., Nguyen B.D., Hardt W.D. Salmonella Typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe. 2017;21:443–454. doi: 10.1016/j.chom.2017.03.009. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES