Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Keywords: virus-like particles, emerging viruses, expression systems, vaccine design, downstream processes
References
- Akahata W., Yang Z.Y., Andersen H., Sun S., Holdaway H.A., Kong W.P., Lewis M.G., Higgs S., Rossmann M.G., Rao S., et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 2010;16:334–338. doi: 10.1038/nm.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andre F.E., Booy R., Bock H.L., Clemens J., Datta S.K., John T.J., Lee B.W., Lolekha S., Peltola H., Ruff T.A., et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008;86:140–146. doi: 10.2471/BLT.07.040089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft A.E., Lago H., Macedo J.M., Horn W.T., Stonehouse N.J., Stockley P.G. Engineering thermal stability in RNA phage capsids via disulphide bonds. J. Nanosci. Nanotechnol. 2005;5:2034–2041. doi: 10.1166/jnn.2005.507. [DOI] [PubMed] [Google Scholar]
- Ashley C.E., Carnes E.C., Phillips G.K., Durfee P.N., Buley M.D., Lino C.A., Padilla D.P., Phillips B., Carter M.B., Willman C.L., et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5:5729–5745. doi: 10.1021/nn201397z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ausar S.F., Foubert T.R., Hudson M.H., Vedvick T.S., Middaugh C.R. Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. J. Biol. Chem. 2006;281:19478–19488. doi: 10.1074/jbc.M603313200. [DOI] [PubMed] [Google Scholar]
- Bachmann M.F., Jennings G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010;10:787–796. doi: 10.1038/nri2868. [DOI] [PubMed] [Google Scholar]
- Bachmann M.F., Rohrer U.H., Kündig T.M., Bürki K., Hengartner H., Zinkernagel R.M. The influence of antigen organization on B cell responsiveness. Science. 1993;262:1448–1451. doi: 10.1126/science.8248784. [DOI] [PubMed] [Google Scholar]
- Bachmann M.F., Zinkernagel R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 1997;15:235–270. doi: 10.1146/annurev.immunol.15.1.235. [DOI] [PubMed] [Google Scholar]
- Bae C.S., Yang D.S., Chang K.R., Seong B.L., Lee J. Enhanced secretion of human granulocyte colony-stimulating factor directed by a novel hybrid fusion peptide from recombinant Saccharomyces cerevisiae at high cell concentration. Biotechnol Bioeng. 1998;57:600–609. doi: 10.1002/(SICI)1097-0290(19980305)57:5<600::AID-BIT12>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Billaud J.N., Peterson D., Barr M., Chen A., Sallberg M., Garduno F., Goldstein P., McDowell W., Hughes J., Jones J., et al. Combinatorial approach to hepadnavirus-like particle vaccine design. J. Virol. 2005;79:13656–13666. doi: 10.1128/JVI.79.21.13656-13666.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowick G.C., McAuley A.J. Vaccine and adjuvant design for emerging viruses: mutations, deletions, segments and signaling. Bioeng. Bugs. 2011;2:129–135. doi: 10.4161/bbug.2.3.15367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bundy B.C., Franciszkowicz M.J., Swartz J.R. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol. Bioeng. 2008;100:28–37. doi: 10.1002/bit.21716. [DOI] [PubMed] [Google Scholar]
- Bundy B.C., Swartz J.R. Efficient disulfide bond formation in virus-like particles. J. Biotechnol. 2011;154:230–239. doi: 10.1016/j.jbiotec.2011.04.011. [DOI] [PubMed] [Google Scholar]
- Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, C.L. 3rd, and Reddy, V.S. 2009. VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37(Database issue), D436–442. [DOI] [PMC free article] [PubMed]
- Chackerian B., Durfee M.R., Schiller J.T. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J. Immunol. 2008;180:5816–5825. doi: 10.4049/jimmunol.180.9.5816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X.S., Casini G., Harrison S.C., Garcea R.L. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J. Mol. Biol. 2001;307:173–182. doi: 10.1006/jmbi.2000.4464. [DOI] [PubMed] [Google Scholar]
- Chen Q., Lai H. Plant-derived virus-like particles as vaccines. Hum. Vaccin Immunother. 2013;9:26–49. doi: 10.4161/hv.22218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi S.I., Han K.S., Kim C.W., Ryu K.S., Kim B.H., Kim K.H., Kim S.I., Kang T.H., Shin H.C., Lim K.H., et al. Protein solubility and folding enhancement by interaction with RNA. PLoS One. 2008;3:2677. doi: 10.1371/journal.pone.0002677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi S.I., Kwon S., Son A., Jeong H., Kim K.H., Seong B.L. Protein folding in vivo revisited. Curr. Protein Pept. Sci. 2013;14:721–733. doi: 10.2174/138920371408131227170544. [DOI] [PubMed] [Google Scholar]
- Choi S.I., Ryu K., Seong B.L. RNA-mediated chaperone type for de novo protein folding. RNA Biol. 2009;6:21–24. doi: 10.4161/rna.6.1.7441. [DOI] [PubMed] [Google Scholar]
- Ding Y., Chuan Y.P., He L., Middelberg A.P.J. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol. Bioeng. 2010;107:550–560. doi: 10.1002/bit.22821. [DOI] [PubMed] [Google Scholar]
- Effio C.L., Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant proteinbased virus-like particles. Biotechnol. J. 2015;10:715–727. doi: 10.1002/biot.201400392. [DOI] [PubMed] [Google Scholar]
- Fernandes F., Teixeira A.P., Carinhas N., Carrondo M.J., Alves P.M. Insect cells as a production platform of complex viruslike particles. Expert Rev. Vaccines. 2013;12:225–236. doi: 10.1586/erv.12.153. [DOI] [PubMed] [Google Scholar]
- Fiedler J.D., Higginson C., Hovlid M.L., Kislukhin A.A., Castillejos A., Manzenrieder F., Campbell M.G., Voss N.R., Potter C.S., Carragher B., et al. Engineered mutations change the structure and stability of a virus-like particle. Biomacromolecules. 2012;13:2339–2348. doi: 10.1021/bm300590x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galarza J.M., Latham T., Cupo A. Virus-like particle vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol. 2005;18:365–372. doi: 10.1089/vim.2005.18.365. [DOI] [PubMed] [Google Scholar]
- Giersing B.K., Modjarrad K., Kaslow D.C., Moorthy V.S. WHO Product Development for Vaccines Advisory Committee; WHO Product Development for Vaccines Product Development Advisory Committee. Report from the World Health Organization’s Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 7-9th Sep 2015. Vaccine. 2016;34:2865–2869. doi: 10.1016/j.vaccine.2016.02.078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giersing B.K., Modjarrad K., Kaslow D.C., Okwo-Bele J.M., Moorthy V.S. The 2016 Vaccine Development Pipeline: A special issue from the World Health Organization Product Development for Vaccine Advisory Committee (PDVAC) Vaccine. 2016;34:2863–2864. doi: 10.1016/j.vaccine.2016.04.041. [DOI] [PubMed] [Google Scholar]
- Grimes J.M., Burroughs J.N., Gouet P., Diprose J.M., Malby R. Z., ntara S., Mertens P.P., Stuart D.I. The atomic structure of the bluetongue virus core. Nature. 1998;395:470–478. doi: 10.1038/26694. [DOI] [PubMed] [Google Scholar]
- Gunther, S., Feldmann, H., Geisbert, T.W., Hensley, L.E., Rollin, P.E., Nichol, S.T., Stroher, U., Artsob, H., Peters, C.J., Ksiazek, T.G., et al. 2011. Management of accidental exposure to Ebola virus in the bios afety level 4 laboratory, Hamburg, Germany. J. Infect. Dis. 204, S785–S790. [DOI] [PubMed]
- Hall A.J. Noroviruses: the perfect human pathogens? J. Infect. Dis. 2012;205:1622–1624. doi: 10.1093/infdis/jis251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall A.J., Rosenthal M., Gregoricus N., Greene S.A., Ferguson J., Henao O.L. V. J., Lopman B.A., Parashar U.D., Widdowson M.A. Incidence of acute gastroenteritis and role of norovirus, Georgia, USA, 2004–2005. Emerg. Infect. Dis. 2011;17:1381–1388. doi: 10.3201/eid1706.110444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han K.S., Kim S.I., Choi S.I., Seong B.L. N-Glycosylation of secretion enhancer peptide as influencing factor for the secretion of target proteins from Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2005;337:557–562. doi: 10.1016/j.bbrc.2005.09.089. [DOI] [PubMed] [Google Scholar]
- Huhti L., Blazevic V., Nurminen K., Koho T. H., nen V.P., Vesikari T. A comparison of methods for purification and concentration of norovirus GII-4 capsid virus-like particles. Arch. Virol. 2010;155:1855–1858. doi: 10.1007/s00705-010-0768-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings G.T., Bachmann M.F. The coming of age of virus-like particle vaccines. Biol. Chem. 2008;389:521–536. doi: 10.1515/BC.2008.064. [DOI] [PubMed] [Google Scholar]
- Jiang X., Wang M., Graham D.Y., Estes M.K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol. 1992;66:6527–6532. doi: 10.1128/jvi.66.11.6527-6532.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaczmarczyk S.J., Sitaraman K., Young H.A., Hughes S.H., Chatterjee D.K. Protein delivery using engineered viruslike particles. Proc. Natl. Acad. Sci. USA. 2011;108:16998–17003. doi: 10.1073/pnas.1101874108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang S.M., Kim M.C., Compans R.W. Virus-like particles as universal influenza vaccines. Expert Rev. Vaccines. 2012;11:995–1007. doi: 10.1586/erv.12.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato S., Kobayashi K., Inoue K., Kuramochi M., Okada T., Yaginuma H., Morimoto K., Shimada T., Takada M., Kobayashi K. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum. Gene Ther. 2011;22:197–206. doi: 10.1089/hum.2009.179. [DOI] [PubMed] [Google Scholar]
- Kawano M., Matsui M., Handa H. SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Rev. Vaccines. 2013;12:199–210. doi: 10.1586/erv.12.149. [DOI] [PubMed] [Google Scholar]
- Keller S.A., Schwarz K., Manolova V. v., Allmen C.E., Kinzler M.G., Bauer M., Muntwiler S., Saudan P., Bachmann M.F. Innate signaling regulates cross-priming at the level of DClicensing and not antigen presentation. Eur. J. Immunol. 2010;40:103–112. doi: 10.1002/eji.200939559. [DOI] [PubMed] [Google Scholar]
- Keswani R.K., Pozdol I.M., Pack D.W. Design of hybrid lipid/retroviral-like particle gene delivery vectors. Mol. Pharm. 2013;10:1725–1735. doi: 10.1021/mp300561y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H.J., Kim H.J. Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett. Appl. Microbiol. 2017;64:111–123. doi: 10.1111/lam.12695. [DOI] [PubMed] [Google Scholar]
- Kissmann J., Ausar S.F., Foubert T.R., Brock J., Switzer M.H., Detzi E.J., Vedvick T.S., Middaugh C.R. Physical stabilization of Norwalk virus-like particles. J. Pharm. Sci. 2008;97:4208–4218. doi: 10.1002/jps.21315. [DOI] [PubMed] [Google Scholar]
- Koho T., Mäntylä T., Laurinmäki P., Huhti L., Butcher S.J., Vesikari T., Kulomaa M.S., Hytönen V.P. Purification of norovirus-like particles (VLPs) by ion exchange chromatography. J. Virol. Methods. 2012;181:6–11. doi: 10.1016/j.jviromet.2012.01.003. [DOI] [PubMed] [Google Scholar]
- Kuroda D., Shirai H., Jacobson M.P., Nakamura H. Computer-aided antibody design. Protein Eng. Des. Sel. 2012;25:507–521. doi: 10.1093/protein/gzs024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushnir N., Streatfield S.J., Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31:58–83. doi: 10.1016/j.vaccine.2012.10.083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai H., Chen Q. Bioprocessing of plant derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell. Rep. 2012;31:573–584. doi: 10.1007/s00299-011-1196-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J., Choi S.I., Jang J.S., Jang K., Moon J.W., Bae C.S., Yang D.S., Seong B.L. Novel secretion system of recombinant Saccharomyces cerevisiae using an N-terminus residue of human IL-1 beta as secretion enhancer. Biotechnol. Prog. 1999;15:884–890. doi: 10.1021/bp9900918. [DOI] [PubMed] [Google Scholar]
- Li H.Y., Han J.F., Qin C.F., Chen R. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine. 2013;31:3281–3287. doi: 10.1016/j.vaccine.2013.05.019. [DOI] [PubMed] [Google Scholar]
- Lico C., Chen Q., Santi L. Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol. 2008;216:366–377. doi: 10.1002/jcp.21423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Link A., Zabel F., Schnetzler Y., Titz A., Brombacher F., Bachmann M.F. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J. Immunol. 2012;188:3724–3733. doi: 10.4049/jimmunol.1103312. [DOI] [PubMed] [Google Scholar]
- Liu M.A., Wahren B., Karlsson Hedestam G.B. DNA vaccines: recent developments and future possibilities. Hum. Gene Ther. 2006;17:1051–1061. doi: 10.1089/hum.2006.17.1051. [DOI] [PubMed] [Google Scholar]
- Ma J.K.C., Barros E., Bock R., Christou P., Dale P.J., Dix P.J., Fischer R., Irwin J., Mahoney R., Pezzotti M., et al. Molecular pharming for new drugs. EMBO Rep. 2005;6:593–599. doi: 10.1038/sj.embor.7400470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mach H., Volkin D.B., Troutman R.D., Wang B.E.I. Disassembly and reassembly of yeast-derived recombinant human papillomavirus virus-like particles (HPV VLPs) J. Pharm. Sci. 2006;95:2195–2206. doi: 10.1002/jps.20696. [DOI] [PubMed] [Google Scholar]
- Manolova V., Flace A., Bauer M., Schwarz K., Saudan P., Bachmann M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008;38:1404–1413. doi: 10.1002/eji.200737984. [DOI] [PubMed] [Google Scholar]
- Marsian J., Lomonossoff G.P. Molecular pharming -VLPs made in plants. Curr. Opin. Biotechnol. 2016;37:201–206. doi: 10.1016/j.copbio.2015.12.007. [DOI] [PubMed] [Google Scholar]
- Matic S., Masenga V., Poli A., Rinaldi R., Milne R.G., Vecchiati M., Noris E. Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol. J. 2012;10:410–421. doi: 10.1111/j.1467-7652.2011.00671.x. [DOI] [PubMed] [Google Scholar]
- McCarthy M.P., White W.I., Palmer-Hill F., Koenig S., Suzich J.A. Quantitative disassembly and reassembly of human papillomavirus type 11 virus-like particles in vitro. J. Virol. 1998;72:32–41. doi: 10.1128/jvi.72.1.32-41.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuigan L.C., Stallard V., Roos J.M., Payne L.G. Recombinant-expressed virus-like particle pseudotypes as an approach to vaccine development. Vaccine. 1993;11:675–678. doi: 10.1016/0264-410X(93)90316-P. [DOI] [PubMed] [Google Scholar]
- Mechtcheriakova I.A., Eldarov M.A., Nicholson L., Shanks M., Skryabin K.G., Lomonossoff G.P. The use of viral vectors to produce hepatitis B virus core particles in plants. J. Virol. Methods. 2006;131:10–15. doi: 10.1016/j.jviromet.2005.06.020. [DOI] [PubMed] [Google Scholar]
- Münger K., Baldwin A., Edwards K.M., Hayakawa H., Nguyen C.L., Owens M., Grace M., Huh K. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol. 2004;78:11451–11460. doi: 10.1128/JVI.78.21.11451-11460.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pallister J., Middleton D., Wang L.F., Klein R., Haining J., Robinson R., Yamada M., White J., Payne J., Feng Y.R., et al. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine. 2011;29:5623–5630. doi: 10.1016/j.vaccine.2011.06.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palomares L.A., Mena J.A., Ramírez O.T. Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: production of virus-like particles. Methods. 2012;56:389–395. doi: 10.1016/j.ymeth.2012.01.004. [DOI] [PubMed] [Google Scholar]
- Pankavich S., Ortoleva P. Multiscaling for systems with a broad continuum of characteristic lengths and times: Structural transitions in nanocomposites. J. Math. Phys. 2012;51:63303. doi: 10.1063/1.3420578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel M.M., Hall A.J. V. J., Parashar U.D. Noroviruses: a comprehensive review. J. Clin. Virol. 2009;44:1–8. doi: 10.1016/j.jcv.2008.10.009. [DOI] [PubMed] [Google Scholar]
- Paul M., van Dolleweerd C., Drake P.M., Reljic R., Thangaraj H., Barbi T., Stylianou E., Pepponi I., Both L., Hehle V., et al. Molecular Pharming: future targets and aspirations. Hum. Vaccin. 2011;7:375–382. doi: 10.4161/hv.7.3.14456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peacey M., Wilson S., Baird M.A., Ward V.K. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol. Bioeng. 2007;98:968–977. doi: 10.1002/bit.21518. [DOI] [PubMed] [Google Scholar]
- Pei H., Liu J., Cheng Y., Sun C., Wang C., Lu Y., Ding J., Zhou J., Xiang H. Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination. Appl. Microbiol. Biotechnol. 2005;68:220–227. doi: 10.1007/s00253-004-1869-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peyret H., Gehin A., Thuenemann E.C., Blond D. E., Turabi A., Beales L., Clarke D., Gilbert R.J., Fry E.E., Stuart D.I., et al. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One. 2015;10:0120751. doi: 10.1371/journal.pone.0120751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plummer E.M., Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed Nanobiotechnol. 2011;3:174–196. doi: 10.1002/wnan.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powell K. DNA vaccines — back in the saddle again? Nat. Biotechnol. 2004;22:799–801. doi: 10.1038/nbt0704-799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad B.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., Estes M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science. 1999;286:287–290. doi: 10.1126/science.286.5438.287. [DOI] [PubMed] [Google Scholar]
- Ramqvist T., Andreasson K., Dalianis T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert. Opin. Biol. Ther. 2007;7:997–1007. doi: 10.1517/14712598.7.7.997. [DOI] [PubMed] [Google Scholar]
- Rathore A.S., Winkle H. Quality by design for biopharmaceuticals. Nat. Biotechnol. 2009;27:26–34. doi: 10.1038/nbt0109-26. [DOI] [PubMed] [Google Scholar]
- Ren Y., Wong S.M., Lim L.Y. In vitro-reassembled plant virus-like particles for loading of polyacids. J. Gen. Virol. 2006;87:2749–2754. doi: 10.1099/vir.0.81944-0. [DOI] [PubMed] [Google Scholar]
- Rodríguez-Limas W.A., Flores-Samaniego B., de la Mora G., Ramírez O.T., Palomares L.A. Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microb. Cell Fact. 2011;10:33. doi: 10.1186/1475-2859-10-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roldão A., Mellado M.C., Lima J.C., Carrondo M.J., Alves P.M., Oliveira R. On the effect of thermodynamic equilibrium on the assembly efficiency of complex multi-layered viruslike particles (VLP): The case of rotavirus VLP. PLoS Comput. Biol. 2012;8:1002367. doi: 10.1371/journal.pcbi.1002367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rybicki E.P. Plant-based vaccines against viruses. Virol. J. 2014;11:205. doi: 10.1186/s12985-014-0205-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabchareon A., Wallace D., Sirivichayakul C., Limkittikul K., Chanthavanich P., Suvannadabba S., Jiwariyavej V., Dulyachai W., Pengsaa K., Wartel T.A., et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012;380:1559–1567. doi: 10.1016/S0140-6736(12)61428-7. [DOI] [PubMed] [Google Scholar]
- Salunke D.M., Caspar D.L., Garcea R.L. Self-assembly of purified polyomavirus capsid protein VP1. Cell. 1986;46:895–904. doi: 10.1016/0092-8674(86)90071-1. [DOI] [PubMed] [Google Scholar]
- Sánchez-Rodríguez S.P., Münch-Anguiano L., Echeverría O., Vázquez-Nin G., Mora-Pale M., Dordick J.S., Bustos-Jaimes I. Human parvovirus B19 virus-like particles: In vitro assembly and stability. Biochimie. 2012;94:870–888. doi: 10.1016/j.biochi.2011.12.006. [DOI] [PubMed] [Google Scholar]
- Scotti N., Rybicki E.P. Virus-like particles produced in plants as potential vaccines. Expert Rev. Vaccines. 2013;12:211–224. doi: 10.1586/erv.12.147. [DOI] [PubMed] [Google Scholar]
- Seow Y., Wood M.J. Biological gene delivery vehicles: beyond viral vectors. Mol. Ther. 2009;17:767–777. doi: 10.1038/mt.2009.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapshak P., Chiappelli F., Somboonwit C., Sinnott J. The influenza pandemic of 2009: lessons and implications. Mol. Diagn. Ther. 2011;15:63–81. doi: 10.1007/BF03256397. [DOI] [PubMed] [Google Scholar]
- Shi L., Sanyal G., Ni A., Luo Z., Doshna S., Wang B., Graham T.L., Wang N., Volkin D.B. Stabilization of human papillomavirus virus-like particles by non-ionic surfactants. J. Pharm. Sci. 2005;94:1538–1551. doi: 10.1002/jps.20377. [DOI] [PubMed] [Google Scholar]
- Søborg C., Mølbak K., Doherty T.M., Ulleryd P., Brooks T., Coenen C., van der Zeijst B. Vaccines in a hurry. Vaccine. 2009;27:3295–3298. doi: 10.1016/j.vaccine.2009.02.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steel J., Lowen A.C., Wang T.T., Yondola M., Gao Q., Haye K., Garcia-Sastre A., Palese P. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010;1:00018. doi: 10.1128/mBio.00018-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storni T., Lechner F., Erdmann I., Bächi T., Jegerlehner A., Dumrese T., Kündig T.M., Ruedl C., Bachmann M.F. Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with viruslike particles. J. Immunol. 2002;168:2880–2886. doi: 10.4049/jimmunol.168.6.2880. [DOI] [PubMed] [Google Scholar]
- Taylor R.M. Production and downstream processing of norovirus virus-like particles. 2009. [Google Scholar]
- Turley C.B., Rupp R.E., Johnson C., Taylor D.N., Wolfson J., Tussey L., Kavita U., Stanberry L., Shaw A. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine. 2011;29:5145–5152. doi: 10.1016/j.vaccine.2011.05.041. [DOI] [PubMed] [Google Scholar]
- Twyman R.M., Stoger E., Schillberg S., Christou P., Fischer R. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 2003;21:570–578. doi: 10.1016/j.tibtech.2003.10.002. [DOI] [PubMed] [Google Scholar]
- U.S. Food and Drug Administration, CBER. 1999. Guidance for Industry Information and Establishment Description Information for a Vaccine.
- Wang T.T., Tan G.S., Hai R., Pica N., Petersen E., Moran T.M., Palese P. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog. 2010;6:1000796. doi: 10.1371/journal.ppat.1000796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitacre D.C., Lee B.O., Milich D.R. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev. Vaccines. 2009;8:1565–1573. doi: 10.1586/erv.09.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- World Health Organization. 2006. Guidelines to assure the quality, safety and efficacy of recombinant human papillomavirus viruslike particle vaccines, pp. 23–27.
- Wynne S.A., Crowther R.A., Leslie A.G. The crystal structure of the human hepatitis B virus capsid. Mol. Cell. 1999;3:771–780. doi: 10.1016/S1097-2765(01)80009-5. [DOI] [PubMed] [Google Scholar]
- Xing L., Li T.C., Mayazaki N., Simon M.N., Wall J.S., Moore M., Wang C.Y., Takeda N., Wakita T., Miyamura T., et al. Structure of hepatitis E virion-sized particle reveals an RNAdependent viral assembly pathway. J. Biol. Chem. 2010;285:33175–33183. doi: 10.1074/jbc.M110.106336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- York I., Donis R.O. The 2009 pandemic influenza virus: where did it come from, where is it now, and where is it going? Curr. Top. Microbiol. Immunol. 2013;370:241–257. doi: 10.1007/82_2012_221. [DOI] [PubMed] [Google Scholar]
- Yu Z., Reid J.C., Yang Y.P. Utilizing dynamic light scattering as a process analytical technology for protein folding and aggregation monitoring in vaccine manufacturing. J. Pharm. Sci. 2013;102:4284–4290. doi: 10.1002/jps.23746. [DOI] [PubMed] [Google Scholar]
- Zabel F., Kündig T.M., Bachmann M.F. Virus-induced humoral immunity: on how B cell responses are initiated. Curr. Opin. Virol. 2013;3:357–362. doi: 10.1016/j.coviro.2013.05.004. [DOI] [PubMed] [Google Scholar]
- Zeltins A. Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 2013;53:92–107. doi: 10.1007/s12033-012-9598-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L., Tang R., Bai S., Connors N.K., Lua L.H., Chuan Y.P., Middelberg A.P., Sun Y. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations. J. Phys. Chem. B. 2013;117:5411–5421. doi: 10.1021/jp311170w. [DOI] [PubMed] [Google Scholar]
- Zhang L., Tang R., Bai S., Connors N.K., Lua L.H., Chuan Y.P., Middelberg A.P., Sun Y. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations. PLoS One. 2014;9:107313. doi: 10.1371/journal.pone.0107313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Q., Allen M.J., Wang Y., Wang B., Wang N., Shi L., Sitrin R.D. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles. Nanomedicine. 2012;8:1182–1189. doi: 10.1016/j.nano.2012.01.007. [DOI] [PubMed] [Google Scholar]
- Zhao Q., Modis Y., High K., Towne V., Meng Y., Wang Y., Alexandroff J., Brown M., Carragher B., Potter C.S., et al. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol. J. 2012;9:52. doi: 10.1186/1743-422X-9-52. [DOI] [PMC free article] [PubMed] [Google Scholar]
