Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Keywords: graphene-based nanomaterials, toxicology and biocompatibility, biomacromolecules, cells, living entities, applications
Acknowledgements
This work was financially supported by the National Key Research and Development Program (No. 2016YFA0201200), the Shanghai Municipal Natural Science Foundation (No. 17ZR1412100), the Key Laboratory of Interfacial Physics and Technology, the Chinese Academy of Sciences (No. CASKL-IPT1603), the Talent Program of Shanghai University of Engineering Science, the Startup Foundation for Doctors of Shanghai University of Engineering Science, and the National Natural Science Foundation of China (Nos. 81870749, 21373260, 31470960 and 51375294).
Contributor Information
Zisheng Tang, Email: tangzisheng163@163.com.
Chunhai Fan, Email: fchh@sinap.ac.cn, Email: fanchunhai@sjtu.edu.cn.
References
- [1].Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. [DOI] [PubMed] [Google Scholar]
- [2].Huang X., Yin Z. Y., Wu S. X., Qi X. Y., He Q. Y., Zhang Q. C., Yan Q. Y., Boey F., Zhang H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small. 2011;7:1876–1902. doi: 10.1002/smll.201002009. [DOI] [PubMed] [Google Scholar]
- [3].Hu X. G., Zhou Q. X. Health and ecosystem risks of graphene. Chem. Rev. 2013;113:3815–3835. doi: 10.1021/cr300045n. [DOI] [PubMed] [Google Scholar]
- [4].Tang L.H., Wang Y., Li J. H. The graphene/nucleic acid nanobiointerface. Chem. Soc. Rev. 2015;44:6954–6580. doi: 10.1039/c4cs00519h. [DOI] [PubMed] [Google Scholar]
- [5].Zheng H. Z., Ma R. L., Gao M., Tian X., Li Y. Q., Zeng L. W., Li R. B. Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety. Sci. Bull. 2018;63:133–142. doi: 10.1016/j.scib.2017.12.012. [DOI] [PubMed] [Google Scholar]
- [6].Park S., Ruoff R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009;4:217–224. doi: 10.1038/nnano.2009.58. [DOI] [PubMed] [Google Scholar]
- [7].Ponomarenko L. A., Schedin F., Katsnelson M. I., Yang R., Hill E. W., Novoselov K. S., Geim A. K. Chaotic dirac billiard in graphene quantum dots. Science. 2008;320:356–358. doi: 10.1126/science.1154663. [DOI] [PubMed] [Google Scholar]
- [8].Slota M., Keerthi A., Myers W. K., Tretyakov E., Baumgarten M., Ardavan A., Sadeghi H., Lambert C. J., Narita A., Müllen K., et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature. 2018;557:691–695. doi: 10.1038/s41586-018-0154-7. [DOI] [PubMed] [Google Scholar]
- [9].Rozploch F., Patyk J., Stankowski J. Graphenes bonding forces in graphite. Acta Phys. Pol. A. 2007;112:557–562. [Google Scholar]
- [10].Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z. Y., De S., McGovern I. T., Holland B., Byrne M., Gun’Ko Y. K., et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008;3:563–568. doi: 10.1038/nnano.2008.215. [DOI] [PubMed] [Google Scholar]
- [11].Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P., Choi J. Y., Hong B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–710. doi: 10.1038/nature07719. [DOI] [PubMed] [Google Scholar]
- [12].Bae S., Kim H., Lee Y., Xu X. F., Park J. S., Zheng Y., Balakrishnan J., Lei T., Kim H. R., Song Y. I., et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. [DOI] [PubMed] [Google Scholar]
- [13].Chen C. Y., Avila J., Arezki H., Nguyen V. L., Shen J. H. M.-, Kruczynski M., Yao F., Boutchich M., Chen Y., Lee Y. H., et al. Large local lattice expansion in graphene adlayers grown on copper. Nat. Mater. 2018;17:450–455. doi: 10.1038/s41563-018-0053-1. [DOI] [PubMed] [Google Scholar]
- [14].Berger C., Song Z. M., Li X. B., Wu X. S., Brown N., Naud C., Mayou D., Li T. B., Hass J., Marchenkov A. N., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006;312:1191–1196. doi: 10.1126/science.1125925. [DOI] [PubMed] [Google Scholar]
- [15].Zhang L. C., Shi Z. W., Liu D. H., Yang R., Shi D. X., Zhang G. Y. Vapour-phase graphene epitaxy at low temperatures. Nano Res. 2012;5:258–264. [Google Scholar]
- [16].Shao Y., Liu Z. L., Cheng C., Wu X., Liu H., Liu C., Wang J. O., Zhu S. Y., Wang Y. Q., Shi D. X., et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett. 2018;18:2133–2139. doi: 10.1021/acs.nanolett.8b00429. [DOI] [PubMed] [Google Scholar]
- [17].Hummers W. S. H. Jr., Offeman R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339–1339. [Google Scholar]
- [18].Dikin D. A., Stankovich S., Zimney E. J., Piner R. D., Dommett G. H. B., Evmenenko G., Nguyen S. T., Ruoff R. S. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–460. doi: 10.1038/nature06016. [DOI] [PubMed] [Google Scholar]
- [19].Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z. Z., Slesarev A., Alemany L. B., Lu W., Tour J. M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. [DOI] [PubMed] [Google Scholar]
- [20].Li D., Müller M. B., Gilje S., Kaner R. B., Wallace G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008;3:101–105. doi: 10.1038/nnano.2007.451. [DOI] [PubMed] [Google Scholar]
- [21].Voiry D., Yang J., Kupferberg J., Fullon R., Lee C., Jeong H. Y., Shin H. S., Chhowalla M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science. 2016;353:1413–1416. doi: 10.1126/science.aah3398. [DOI] [PubMed] [Google Scholar]
- [22].Nam J. M., Thaxton C. S., Mirkin C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–1886. doi: 10.1126/science.1088755. [DOI] [PubMed] [Google Scholar]
- [23].Wang P. J., Wan Y., Ali A., Deng S. Y., Su Y., Fan C. H., Yang S. L. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 2016;59:237–242. [Google Scholar]
- [24].Katz E., Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem., Int. Ed. 2004;43:6042–6108. doi: 10.1002/anie.200400651. [DOI] [PubMed] [Google Scholar]
- [25].Xu Y., Zhao Y., Zhang Y. J., Cui Z. F., Wang L. H., Fan C. H., Gao J. M., Sun Y. H. Angiopep-2-conjugated Ag2S quantum dot for NIR-II imaging of brain tumors. Acta Chim. Sin. 2018;76:393–399. [Google Scholar]
- [26].Cui X. H., Chen H. Y., Yang T. Research progress on the preparation and application of nano-sized molybdenum disulfide. Acta Chim. Sin. 2016;74:392–400. [Google Scholar]
- [27].Lu N., Gao A. R., Dai P. F., Song S. P., Fan C. H., Wang Y. L., Li T. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small. 2014;10:2022–2028. doi: 10.1002/smll.201302990. [DOI] [PubMed] [Google Scholar]
- [28].Ramanathan T., Abdala A. A., Stankovich S., Dikin D. A. H.-, Alonso M., Piner R. D., Adamson D. H., Schniepp H. C., Chen X., Ruoff R. S., et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008;3:327–331. doi: 10.1038/nnano.2008.96. [DOI] [PubMed] [Google Scholar]
- [29].Stuart M. A. C., Huck W. T. S., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010;9:101–113. doi: 10.1038/nmat2614. [DOI] [PubMed] [Google Scholar]
- [30].Huang X., Qi X. Y., Boey F., Zhang H. Graphene-based composites. Chem. Soc. Rev. 2012;41:666–686. doi: 10.1039/c1cs15078b. [DOI] [PubMed] [Google Scholar]
- [31].Muszynski R., Seger B., Kamat P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C. 2008;112:5263–5266. [Google Scholar]
- [32].Cao A. N., Liu Z., Chu S. S., Wu M. H., Ye Z. M., Cai Z. W., Chang Y. L., Wang S. F., Gong Q. H., Liu Y. F. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010;22:103–106. doi: 10.1002/adma.200901920. [DOI] [PubMed] [Google Scholar]
- [33].Ji H. W., Sun H. J., Qu X. G. Antibacterial applications of graphenebased nanomaterials: Recent achievements and challenges. Adv. Drug Deliver. Rev. 2016;105:176–189. doi: 10.1016/j.addr.2016.04.009. [DOI] [PubMed] [Google Scholar]
- [34].Liu J. W., Cao Z. H., Lu Y. Functional nucleic acid sensors. Chem. Rev. 2009;109:1948–1998. doi: 10.1021/cr030183i. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [35].Ge Z. L., Pei H., Wang L. H., Song S. P., Fan C. H. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Sci. China Chem. 2011;54:1273. [Google Scholar]
- [36].Seeman N. C. DNA in a material world. Nature. 2003;421:427–431. doi: 10.1038/nature01406. [DOI] [PubMed] [Google Scholar]
- [37].Zhang H. Z., Zhang Z. Q., Wang F., Zhou T., Wang X. F., Zhang G. D., Liu T. T., Liu S. Z. Application of structural DNA nanotechnology. Acta Phys. Chim. Sin. 2017;33:1520–1532. [Google Scholar]
- [38].Pinheiro A. V., Han D. R., Shih W. M., Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011;6:763–772. doi: 10.1038/nnano.2011.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Ye D. K., Zuo X. L., Fan C. H. DNA nanostructure-based engineering of the biosensing interface for biomolecular detection. Prog. Chem. 2017;29:36–46. [Google Scholar]
- [40].Liu D. G., Park S. H., Reif J. H., LaBean T. H. DNA nanotubes selfassembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. USA. 2004;101:717–722. doi: 10.1073/pnas.0305860101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Lin C. X., Katilius E., Liu Y., Zhang J. P., Yan H. Self-assembled signaling aptamer DNA arrays for protein detection. Angew. Chem., Int. Ed. 2006;45:5296–5301. doi: 10.1002/anie.200600438. [DOI] [PubMed] [Google Scholar]
- [42].Rothemund P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302. doi: 10.1038/nature04586. [DOI] [PubMed] [Google Scholar]
- [43].Chao J., Zhang Y. N., Zhu D., Liu B., Cui C. J., Su S., Fan C. H., Wang L. H. Hetero-assembly of gold nanoparticles on a DNA origami template. Sci. China Chem. 2016;59:730–734. [Google Scholar]
- [44].Han D. R., Pal S., Nangreave J., Deng Z. T., Liu Y., Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332:342–346. doi: 10.1126/science.1202998. [DOI] [PubMed] [Google Scholar]
- [45].Fan C. H., Fang X. H. Special topic for “single-molecule, single-particle and single-cell bioimaging”. Sci. China Chem. 2017;60:1265–1266. [Google Scholar]
- [46].Gao Z. S., Deng S. H., Li J., Wang K., Li J. J., Wang L. H., Fan C. H. Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization. Sci. China Chem. 2017;60:1305–1309. [Google Scholar]
- [47].Wang S. P., Deng S. H., Cai X. Q., Hou S. G., Li J. J., Gao Z. S., Li J., Wang L. H., Fan C. H. Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope. Sci. China Chem. 2016;59:1519–1524. [Google Scholar]
- [48].Liu Q., Sun Y., Yang T. S., Feng W., Li C. G., Li F. Y. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2016;133:17122–17125. doi: 10.1021/ja207078s. [DOI] [PubMed] [Google Scholar]
- [49].Yang K., Feng L. Z., Shi X. Z., Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013;42:530–547. doi: 10.1039/c2cs35342c. [DOI] [PubMed] [Google Scholar]
- [50].Dreaden E. C., Alkilany A. M., Huang X. H., Murphy C. J., El-Sayed M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012;41:2740–2779. doi: 10.1039/c1cs15237h. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Su Y. Y., Peng T. H., Xing F. F., Li D., Fan C. H. Nanoplasmonic biological sensing and imaging. Acta Chim. Sin. 2017;75:1036–1046. [Google Scholar]
- [52].Long Y. T., Fan C. H. Nanosensors. Acta Chim. Sin. 2017;75:1021–1022. [Google Scholar]
- [53].Chao J., Fan C. H. A photoelectrochemical sensing strategy for biomolecular detection. Sci. China Chem. 2015;58:834. [Google Scholar]
- [54].Patil A. J., Vickery J. L., Scott T. B., Mann S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 2009;21:3159–3164. [Google Scholar]
- [55].Lu C. H., Yang H. H., Zhu C. L., Chen X., Chen G. N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 2009;48:4785–4787. doi: 10.1002/anie.200901479. [DOI] [PubMed] [Google Scholar]
- [56].He S. J., Song B., Li D., Zhu C. F., Qi W. P., Wen Y. Q., Wang L. H., Song S. P., Fang H. P., Fan C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010;20:453–459. [Google Scholar]
- [57].Chang H. X., Tang L. H., Wang Y., Jiang J. H., Li J. H. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 2010;82:2341–2346. doi: 10.1021/ac9025384. [DOI] [PubMed] [Google Scholar]
- [58].Wu M., Kempaiah R., Huang P. J. J., Maheshwari V., Liu J. W. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir. 2011;27:2731–2738. doi: 10.1021/la1037926. [DOI] [PubMed] [Google Scholar]
- [59].Kotikam V., Fernandes M., Kumar V. A. Comparing the interactions of DNA, polyamide (PNA) and polycarbamate nucleic acid (PCNA) oligomers with graphene oxide (GO) Phys. Chem. Chem. Phys. 2012;14:15003–15006. doi: 10.1039/c2cp42770b. [DOI] [PubMed] [Google Scholar]
- [60].Cui L., Chen Z. R., Zhu Z., Lin X. Y., Chen X., Yang C. J. Stabilization of ssRNA on graphene oxide surface: An effective way to design highly robust RNA probes. Anal. Chem. 2013;85:2269–2275. doi: 10.1021/ac303179z. [DOI] [PubMed] [Google Scholar]
- [61].Zhang H., Jia S. S., Lv M., Shi J. Y., Zuo X. L., Su S., Wang L. H., Huang W., Fan C. H., Huang Q. Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. Anal. Chem. 2014;86:4047–4051. doi: 10.1021/ac500627r. [DOI] [PubMed] [Google Scholar]
- [62].Xu S. C., Zhan J., Man B. Y., Jiang S. Z., Yue W. W., Gao S. B., Guo C. G., Liu H. P., Li Z. H., Wang J. H., et al. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun. 2017;8:14902. doi: 10.1038/ncomms14902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Heerema S. J., Vicarelli L., Pud S., Schouten R. N., Zandbergen H. W., Dekker C. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano. 2018;12:2623–2633. doi: 10.1021/acsnano.7b08635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [64].Pei H., Li J., Lv M., Wang J. Y., Gao J. M., Lu J. X., Li Y. P., Huang Q., Hu J., Fan C. H. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 2012;134:13843–13849. doi: 10.1021/ja305814u. [DOI] [PubMed] [Google Scholar]
- [65].Feng L. Y., Li W., Ren J. S., Qu X. G. Electrochemically and DNAtriggered cell release from ferrocene/β-cyclodextrin and aptamer modified dualfunctionalized graphene substrate. Nano Res. 2015;8:887–899. [Google Scholar]
- [66].Liu M., Song J. P., Shuang S. M., Dong C., Brennan J. D., Li Y. F. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano. 2014;8:5564–5573. doi: 10.1021/nn5007418. [DOI] [PubMed] [Google Scholar]
- [67].Liu S. Z., Zhang Z. Q., Wang F., Zhou T., Wang X. F., Zhang G. D., Liu T. T., Zhang H. Z. Study on the synthesis of DNA via rolling circle amplification. Acta Phys. Chim. Sin. 2017;33:2052–2057. [Google Scholar]
- [68].Li F., Liu X. G., Zhao B., Yan J., Li Q., Aldalbahi A., Shi J. Y., Song S. P., Fan C. H., Wang L. H. Graphene nanoprobes for real-time monitoring of isothermal nucleic acid amplification. ACS Appl. Mater. Interfaces. 2017;9:15245–15253. doi: 10.1021/acsami.7b01134. [DOI] [PubMed] [Google Scholar]
- [69].Liu X. Q., Aizen R., Freeman R., Yehezkeli O., Willner I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: Application for logic gate operations. ACS Nano. 2012;6:3553–3563. doi: 10.1021/nn300598q. [DOI] [PubMed] [Google Scholar]
- [70].Tian Y., Wang Y., Xu Y., Liu Y., Li D., Fan C. H. A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: A combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction. Sci. China Chem. 2015;58:514–518. [Google Scholar]
- [71].Gowtham S., Scheicher R. H., Ahuja R., Pandey R., Karna S. P. Physisorption of nucleobases on graphene: Density-functional calculations. Phys. Rev. B. 2007;76:033401. [Google Scholar]
- [72].Varghese N., Mogera U., Govindaraj A., Das A., Maiti P. K., Sood A. K., Rao C. N. R. Binding of DNA nucleobases and nucleosides with graphene. Chemphyschem. 2009;10:206–210. doi: 10.1002/cphc.200800459. [DOI] [PubMed] [Google Scholar]
- [73].Panigrahi S., Bhattacharya A., Banerjee S., Bhattacharyya D. Interaction of nucleobases with wrinkled graphene surface: Dispersion corrected DFT and AFM studies. J. Phys. Chem. C. 2012;116:4374–4379. [Google Scholar]
- [74].Zhang Y. Y., Li M., Li Z. H., Li Q., Aldalbahi A., Shi J. Y., Wang L. H., Fan C. H., Zuo X. L. Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. Sci. China Chem. 2017;60:1474–1480. [Google Scholar]
- [75].Duan X. X., Li Y., Rajan N. K., Routenberg D. A., Modis Y., Reed M. A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 2012;7:401–407. doi: 10.1038/nnano.2012.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [76].Li J., Kuang Y., Shi J. F., Zhou J., Medina J. E., Zhou R., Yuan D., Yang C. H., Wang H. M., Yang Z. M., et al. Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew. Chem., Int. Ed. 2015;127:13505–13509. doi: 10.1002/anie.201507157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [77].Jung J. H., Cheon D. S., Liu F., Lee K. B., Seo T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem., Int. Ed. Int. Ed. 2010;49:5708–5711. doi: 10.1002/anie.201001428. [DOI] [PubMed] [Google Scholar]
- [78].Wang L. H., Pu K. Y., Li J., Qi X. Y., Li H., Zhang H., Fan C. H., Liu B. A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. Adv. Mater. 2011;23:4386–4391. doi: 10.1002/adma.201102227. [DOI] [PubMed] [Google Scholar]
- [79].Chou S. S., De M., Luo J. Y., Rotello V. M., Huang J. X., Dravid V. P. Nanoscale graphene oxide (nGO) as artificial receptors: Implications for biomolecular interactions and sensing. J. Am. Chem. Soc. 2012;134:16725–16733. doi: 10.1021/ja306767y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [80].Tan X. F., Feng L. Z., Zhang J., Yang K., Zhang S., Liu Z., Peng R. Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl. Mater. Interaces. 2013;5:1370–1377. doi: 10.1021/am302706g. [DOI] [PubMed] [Google Scholar]
- [81].Gan S. Y., Zhong L. J., Han D. X., Niu L., Chi Q. J. Probing bio-nano interactions between blood proteins and monolayer-stabilized graphene sheets. Small. 2015;11:5814–5825. doi: 10.1002/smll.201501819. [DOI] [PubMed] [Google Scholar]
- [82].Feng B. Y., Guo L. J., Wang L. H., Li F., Lu J. X., Gao J. M., Fan C. H., Huang Q. A graphene oxide-based fluorescent biosensor for the analysis of peptide-receptor interactions and imaging in somatostatin receptor subtype 2 overexpressed tumor cells. Anal. Chem. 2013;85:7732–7737. doi: 10.1021/ac4009463. [DOI] [PubMed] [Google Scholar]
- [83].Zou X. Q., Wei S., Jasensky J., Xiao M. Y., Wang Q. M., Brooks C. L., Chen Z. Molecular interactions between graphene and biological molecules. J. Am. Chem. Soc. 2017;139:1928–1936. doi: 10.1021/jacs.6b11226. [DOI] [PubMed] [Google Scholar]
- [84].Chen Y. J., Chen Z. H., Sun Y. X., Lei J. T., Wei G. H. Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment. Nanoscale. 2018;10:8989–8997. doi: 10.1039/c8nr01041b. [DOI] [PubMed] [Google Scholar]
- [85].Jang H., Ryoo S. R., Kim Y. K., Yoon S., Kim H., Han S. W., Choi B. S., Kim D. E., Min D. H. Discovery of hepatitis C virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide. Angew. Chem., Int. Ed. 2013;52:2340–2344. doi: 10.1002/anie.201209222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [86].Song Z. Y., Wang X. Y., Zhu G. X., Nian Q. G., Zhou H. Y., Yang D., Qin C. F., Tang R. K. Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small. 2015;11:1171–1176. doi: 10.1002/smll.201401706. [DOI] [PubMed] [Google Scholar]
- [87].Deokar A. R., Nagvenkar A. P., Kalt I., Shani L., Yeshurun Y., Gedanken A., Sarid R. Graphene-based “hot plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjugate Chem. 2017;28:1115–1122. doi: 10.1021/acs.bioconjchem.7b00030. [DOI] [PubMed] [Google Scholar]
- [88].Sametband M., Kalt I., Gedanken A., Sarid R. Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl. Mater. Interfaces. 2014;6:1228–1235. doi: 10.1021/am405040z. [DOI] [PubMed] [Google Scholar]
- [89].Gholami M. F., Lauster D., Ludwig K., Storm J., Ziem B., Severin N., Böttcher C., Rabe J. P., Herrmann A., Adeli M., et al. Functionalized graphene as extracellular matrix mimics: Toward well-defined 2D nanomaterials for multivalent virus interactions. Adv. Funct. Mater. 2017;27:1606477. [Google Scholar]
- [90].Zhan L., Li C. M., Wu W. B., Huang C. Z. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticlesgraphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem. Commun. 2014;50:11526–11528. doi: 10.1039/c4cc05155f. [DOI] [PubMed] [Google Scholar]
- [91].Afsahi S., Lerner M. B., Goldstein J. M., Lee J., Tang X. L., Bagarozzi D. A. Jr., Pan D., Locascio L., Walker A., Barron F., et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018;100:85–88. doi: 10.1016/j.bios.2017.08.051. [DOI] [PubMed] [Google Scholar]
- [92].Lee Y. M., Jung B., Kim Y. H., Park A. R., Han S., Choe W. S., Yoo P. J. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film. Adv. Mater. 2014;26:3899–3904. doi: 10.1002/adma.201305862. [DOI] [PubMed] [Google Scholar]
- [93].Chen H. Q., Müller M. B., Gilmore K. J., Wallace G. G., Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008;20:3557–3561. [Google Scholar]
- [94].Lee W. C., Lim C. H. Y. X., Shi H., Tang L. A. L., Wang Y., Lim C. T., Loh K. P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5:7334–7341. doi: 10.1021/nn202190c. [DOI] [PubMed] [Google Scholar]
- [95].Rastogi S. K., Raghavan G., Yang G., Cohen-Karni T. Effect of graphene on nonneuronal and neuronal cell viability and stress. Nano Lett. 2017;17:3297–3301. doi: 10.1021/acs.nanolett.7b01215. [DOI] [PubMed] [Google Scholar]
- [96].Guo C. X., Zheng X. T., Lu Z. S., Lou X. W., Li C. M. Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 2010;22:5164–5167. doi: 10.1002/adma.201001699. [DOI] [PubMed] [Google Scholar]
- [97].Bardhan N. M., Kumar P. V., Li Z. Y., Ploegh H. L., Grossman J. C., Belcher A. M., Chen G. Y. Enhanced cell capture on functionalized graphene oxide nanosheets through oxygen clustering. ACS Nano. 2017;11:1548–1558. doi: 10.1021/acsnano.6b06979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [98].Shah S., Yin P. T., Uehara T. M., Chueng S. T. D., Yang L. T., Lee K. B. Guiding stem cell differentiation into oligodendrocytes using graphenenanofiber hybrid scaffolds. Adv. Mater. 2014;26:3673–3680. doi: 10.1002/adma.201400523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [99].Li W., Wang J. S., Ren J. S., Qu X. G. 3D graphene oxide-polymer hydrogel: Near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv. Mater. 2013;25:6737–6743. doi: 10.1002/adma.201302810. [DOI] [PubMed] [Google Scholar]
- [100].Lu J. Y., Zhang X. X., Zhu Q. Y., Zhang F. R., Huang W. T., Ding X. Z., Xia L. Q., Luo H. Q., Li N. B. Highly tunable and scalable fabrication of 3D flexible graphene micropatterns for directing cell alignment. ACS Appl. Mater. Interfaces. 2018;10:17704–17713. doi: 10.1021/acsami.8b04416. [DOI] [PubMed] [Google Scholar]
- [101].Chang Y. L., Yang S. T., Liu J. H., Dong E. Y., Wang Y. W., Cao A. N., Liu Y. F., Wang H. F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200:201–210. doi: 10.1016/j.toxlet.2010.11.016. [DOI] [PubMed] [Google Scholar]
- [102].Chong Y., Ma Y. F., Shen H., Tu X. L., Zhou X., Xu J. Y., Dai J. W., Fan S. J., Zhang Z. J. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–5048. doi: 10.1016/j.biomaterials.2014.03.021. [DOI] [PubMed] [Google Scholar]
- [103].Zhang Y. B., Ali S. F., Dervishi E., Xu Y., Li Z. R., Casciano D., Biris A. S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4:3181–3186. doi: 10.1021/nn1007176. [DOI] [PubMed] [Google Scholar]
- [104].Vallabani N. V. S., Mittal S., Shukla R. K., Pandey A. K., Dhakate S. R., Pasricha R., Dhawan A. Toxicity of graphene in normal human lung cells (BEAS-2B) J. Biomed. Nanotechnol. 2011;7:106–107. doi: 10.1166/jbn.2011.1224. [DOI] [PubMed] [Google Scholar]
- [105].Hu W. B., Peng C., Lv M., Li X. M., Zhang Y. J., Chen N., Fan C. H., Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5:3693–3700. doi: 10.1021/nn200021j. [DOI] [PubMed] [Google Scholar]
- [106].Chong Y., Ge C. C., Yang Z. X., Garate J. A., Gu Z. L., Weber J. K., Liu J. J., Zhou R. H. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano. 2015;9:5713–5724. doi: 10.1021/nn5066606. [DOI] [PubMed] [Google Scholar]
- [107].Zhang H., Cheng P., Yang J. Z., Lv M., Liu R., He D. N., Fan C. H., Huang Q. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. ACS Appl. Mater. Interfaces. 2013;5:1761–1767. doi: 10.1021/am303005j. [DOI] [PubMed] [Google Scholar]
- [108].Mittal S., Kumar V., Dhiman N., Chauhan L. K. S., Pasricha R., Pandey A. K. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep. 2016;6:39548. doi: 10.1038/srep39548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Vranic S., Rodrigues A. F., Buggio M., Newman L., White M. R. H., Spiller D. G., Bussy C., Kostarelos K. Live imaging of label-free graphene oxide reveals critical factors causing oxidative-stress-mediated cellular responses. ACS Nano. 2018;12:1373–1389. doi: 10.1021/acsnano.7b07734. [DOI] [PubMed] [Google Scholar]
- [110].Li R. B., Guiney L. M., Chang C. H., Mansukhani N. D., Ji Z. X., Wang X., Liao Y. P., Jiang W., Sun B. B., Hersam M. C., et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano. 2018;12:1390–1402. doi: 10.1021/acsnano.7b07737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Li Y., Liu Y., Fu Y. J., Wei T. T. L., Guyader L., Gao G., Liu R. S., Chang Y. Z., Chen C. Y. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33:402–411. doi: 10.1016/j.biomaterials.2011.09.091. [DOI] [PubMed] [Google Scholar]
- [112].Chen G. Y., Yang H. J., Lu C. H., Chao Y. C., Hwang S. M., Chen C. L., Lo K. W., Sung L. Y., Luo W. Y., Tuan H. Y., et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33:6559–6569. doi: 10.1016/j.biomaterials.2012.05.064. [DOI] [PubMed] [Google Scholar]
- [113].Wang L., Li X. M., Han Y. P., Wang T., Zhao Y., Ali A., El-Sayed N. N., Shi J. Y., Wang W. F., Fan C. H., et al. Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson’s disease through autophagy induction. Sci. China Chem. 2016;59:1486–1491. [Google Scholar]
- [114].Pieper H., Chercheja S., Eigler S., Halbig C. E., Filipovic M. R., Mokhir A. Endoperoxides revealed as origin of the toxicity of graphene oxide. Angew. Chem., Int. Ed. 2016;55:405–407. doi: 10.1002/anie.201507070. [DOI] [PubMed] [Google Scholar]
- [115].Zhu J. Q., Xu M., Gao M., Zhang Z. H., Xu Y., Xia T., Liu S. J. Graphene oxide-induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano. 2017;11:2637–2651. doi: 10.1021/acsnano.6b07311. [DOI] [PubMed] [Google Scholar]
- [116].Zhang W. D., Wang C., Li Z. J., Lu Z. Z., Li Y. Y., Yin J. J., Zhou Y. T., Gao X. F., Fang Y., Nie G., et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater. 2012;24:5391–5397. doi: 10.1002/adma.201202678. [DOI] [PubMed] [Google Scholar]
- [117].Zhang X. Y., Yin J. L., Peng C., Hu W. Q., Zhu Z. Y., Li W. X., Fan C. H., Huang Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49:986–995. [Google Scholar]
- [118].Yang K., Wan J. M., Zhang S., Zhang Y. J., Lee S. T., Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5:516–522. doi: 10.1021/nn1024303. [DOI] [PubMed] [Google Scholar]
- [119].Li B., Zhang X. Y., Yang J. Z., Zhang Y. J., Li W. X., Fan C. H., Huang Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomedicine. 2014;9:4697–4707. doi: 10.2147/IJN.S66591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [120].Zhang S., Yang K., Feng L. Z., Liu Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon. 2011;49:4040–4049. [Google Scholar]
- [121].Yang K., Gong H., Shi X. Z., Wan J. M., Zhang Y. J., Liu Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 2013;34:2787–2795. doi: 10.1016/j.biomaterials.2013.01.001. [DOI] [PubMed] [Google Scholar]
- [122].Syama S., Paul W., Sabareeswaran A., Mohanan P. V. Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials. 2017;131:121–130. doi: 10.1016/j.biomaterials.2017.03.043. [DOI] [PubMed] [Google Scholar]
- [123].Nurunnabi M., Khatun Z., Huh K. M., Park S. Y., Lee D. Y., Cho K. J., Lee Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7:6858–6867. doi: 10.1021/nn402043c. [DOI] [PubMed] [Google Scholar]
- [124].Ema M., Gamo M., Honda K. A review of toxicity studies on graphenebased nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol. 2017;85:7–24. doi: 10.1016/j.yrtph.2017.01.011. [DOI] [PubMed] [Google Scholar]
- [125].Gollavelli G., Ling Y. C. Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials. 2012;33:2532–2545. doi: 10.1016/j.biomaterials.2011.12.010. [DOI] [PubMed] [Google Scholar]
- [126].Akhavan O., Ghaderi E., Rahimi K. Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J. Mater. Chem. 2012;22:23260–23266. [Google Scholar]
- [127].Xu S., Zhang Z. Y., Chu M. Q. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development. Biomaterials. 2015;54:188–200. doi: 10.1016/j.biomaterials.2015.03.015. [DOI] [PubMed] [Google Scholar]
- [128].Ma J., Liu R., Wang X., Liu Q., Chen Y., Valle R. P., Zuo Y. Y., Xia T., Liu S. J. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano. 2015;9:10498–10515. doi: 10.1021/acsnano.5b04751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [129].Begum P., Ikhtiari R., Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon. 2011;49:3907–3919. [Google Scholar]
- [130].Zhang P., Zhang R. R., Fang X. Z., Song T. Q., Cai X. D., Liu H. J., Du S. T. Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): Short- and long-term exposure studies. J. Hazard. Mater. 2016;317:543–551. doi: 10.1016/j.jhazmat.2016.06.019. [DOI] [PubMed] [Google Scholar]
- [131].Wang Q. Q., Zhao S. Q., Zhao Y. L., Rui Q., Wang D. Y. Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv. 2014;4:60891–60901. [Google Scholar]
- [132].Zhao S. Q., Wang Q. Q., Zhao Y. L., Rui Q., Wang D. Y. Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ. Toxicol. Pharmacol. 2015;39:145–156. doi: 10.1016/j.etap.2014.11.014. [DOI] [PubMed] [Google Scholar]
- [133].Chen L. Y., Wang C. L., Li H. L., Qu X. L., Yang S. T., Chang X. L. Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environ. Sci. Technol. 2017;51:10146–10153. doi: 10.1021/acs.est.7b00822. [DOI] [PubMed] [Google Scholar]
- [134].Zhang J. Y., Liu L. L., Ren L., Feng W. M., Lv P., Wu W., Yan Y. C. The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. J. Hazard. Mater. 2017;334:121–131. doi: 10.1016/j.jhazmat.2017.03.055. [DOI] [PubMed] [Google Scholar]
- [135].Lopes S., Pinheiro C., Soares A. M. V. M., Loureiro S. Joint toxicity prediction of nanoparticles and ionic counterparts: Simulating toxicity under a fate scenario. J. Hazard. Mater. 2016;320:1–9. doi: 10.1016/j.jhazmat.2016.07.068. [DOI] [PubMed] [Google Scholar]
- [136].Hu W. B., Peng C., Luo W. J., Lv M., Li X. M., Li D., Huang Q., Fan C. H. Graphene-based antibacterial paper. ACS Nano. 2010;4:4317–4323. doi: 10.1021/nn101097v. [DOI] [PubMed] [Google Scholar]
- [137].Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–5736. doi: 10.1021/nn101390x. [DOI] [PubMed] [Google Scholar]
- [138].Liu S. B., Zeng T. H., Hofmann M., Burcombe E., Wei J., Jiang R. R., Kong J., Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano. 2011;5:6971–6980. doi: 10.1021/nn202451x. [DOI] [PubMed] [Google Scholar]
- [139].He J. L., Zhu X. D., Qi Z. N., Wang C., Mao X. J., Zhu C. L., He Z. Y., Li M. Y., Tang Z. S. Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces. 2015;7:5605–5611. doi: 10.1021/acsami.5b01069. [DOI] [PubMed] [Google Scholar]
- [140].Liu S. B., Hu M., Zeng T. H., Wu R., Jiang R. R., Wei J., Wang L., Kong J., Chen Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir. 2012;28:12364–12372. doi: 10.1021/la3023908. [DOI] [PubMed] [Google Scholar]
- [141].Tu Y. S., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Liu Z. R., Huang Q., Fan C. H., Fang H. P., et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013;8:594–601. doi: 10.1038/nnano.2013.125. [DOI] [PubMed] [Google Scholar]
- [142].Perreault F. d, Faria A. F., Nejati S., Elimelech M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano. 2015;9:7226–7236. doi: 10.1021/acsnano.5b02067. [DOI] [PubMed] [Google Scholar]
- [143].Hui L. W., Huang J. L., Chen G. X., Zhu Y. W., Yang L. H. Antibacterial property of graphene quantum dots (both source material and bacterial shape matter) ACS Appl. Mater. Interfaces. 2016;8:20–25. doi: 10.1021/acsami.5b10132. [DOI] [PubMed] [Google Scholar]
- [144].Kuo W. S., Chen H. H., Chen S. Y., Chang C. Y., Chen P. C., Hou Y. I., Shao Y. T., Kao H. F. L., Hsu C. L., Chen Y. C., et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials. 2017;120:185–194. doi: 10.1016/j.biomaterials.2016.12.022. [DOI] [PubMed] [Google Scholar]
- [145].Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- [146].Das M. R., Sarma R. K., Borah S. C., Kumari R., Saikia R., Deshmukh A. B., Shelke M. V., Sengupta P., Szunerits S., Boukherroub R. The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloid. Surf. B: Biointerfaces. 2013;105:128–136. doi: 10.1016/j.colsurfb.2012.12.033. [DOI] [PubMed] [Google Scholar]
- [147].Yu L., Zhang Y. T., Zhang B., Liu J. D. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci. Rep. 2014;4:4551. doi: 10.1038/srep04551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [148].Shen J. F., Shi M., Li N., Yan B., Ma H. W., Hu Y. Z., Ye M. X. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010;3:339–349. [Google Scholar]
- [149].Prasad K., Lekshmi G. S., Ostrikov K., Lussini V., Blinco J., Mohandas M., Vasilev K., Bottle S., Bazaka K., Ostrikov K. Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci. Rep. 2017;7:1591. doi: 10.1038/s41598-017-01669-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [150].Xu W. P., Zhang L. C., Li J. P., Lu Y., Li H. H., Ma Y. N., Wang W. D., Yu S. H. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011;21:4593–4597. [Google Scholar]
- [151].Ocsoy I., Paret M. L., Ocsoy M. A., Kunwar S., Chen T., You M. X., Tan W. H. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano. 2013;7:8972–8980. doi: 10.1021/nn4034794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [152].Ocsoy I., Gulbakan B., Chen T., Zhu G. Z., Chen Z., Sari M. M., Peng L., Xiong X. L., Fang X. H., Tan W. H. DNA-guided metalnanoparticle formation on graphene oxide surface. Adv. Mater. 2013;25:2319–2325. doi: 10.1002/adma.201204944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [153].Meng X. Y., Wang H. Y., Chen N., Ding P., Shi H. Y., Zhai X., Su Y. Y., He Y. A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal. Chem. 2018;90:5646–5653. doi: 10.1021/acs.analchem.7b05139. [DOI] [PubMed] [Google Scholar]
- [154].Wei Y. H., Chen S., Kowalczyk B., Huda S., Gray T. P., Grzybowski B. A. Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C. 2010;114:15612–15616. [Google Scholar]
- [155].Lin D. H., Qin T. Q., Wang Y. Q., Sun X. Y., Chen L. X. Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Appl. Mater. Interfaces. 2014;6:1320–1329. doi: 10.1021/am405396k. [DOI] [PubMed] [Google Scholar]
- [156].Wang X. D., Zhou N. L., Yuan J., Wang W. Y., Tang Y. D., Lu C. Y., Zhang J., Shen J. Antibacterial and anticoagulation properties of carboxylated graphene oxide-lanthanum complexes. J. Mater. Chem. 2012;22:1673–1678. [Google Scholar]
- [157].Akhavan O., Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C. 2009;113:20214–20220. [Google Scholar]
- [158].Liu J. C., Liu L., Bai H. W., Wang Y. J., Sun D. D. Gram-scale production of graphene oxide-TiO2 nanorod composites: Towards highactivity photocatalytic materials. Appl. Catal. B: Environ. 2011;106:76–82. [Google Scholar]
- [159].Kim I. Y., Park S., Kim H., Park S., Ruoff R. S., Hwang S. J. Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film. Adv. Funct. Mater. 2014;24:2288–2294. [Google Scholar]
- [160].Santos C. M., Tria M. C. R., Vergara R. A. M. V., Ahmed F., Advincula R. C., Rodrigues D. F. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem. Commun. 2011;47:8892–8894. doi: 10.1039/c1cc11877c. [DOI] [PubMed] [Google Scholar]
- [161].Some S., Ho S. M., Dua P., Hwang E., Shin Y. H., Yoo H., Kang J. S., Lee D. K., Lee H. Dual functions of highly potent graphene derivative-poly-L-lysine composites to inhibit bacteria and support human cells. ACS Nano. 2012;6:7151–7161. doi: 10.1021/nn302215y. [DOI] [PubMed] [Google Scholar]
- [162].Li Y. F., Yuan H. Y. v d, Bussche A., Creighton M., Hurt R. H., Kane A. B., Gao H. J. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA. 2013;110:12295–12300. doi: 10.1073/pnas.1222276110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [163].Pham V. T. H., Truong V. K., Quinn M. D. J., Notley S. M., Guo Y. C., Baulin V. A. A., Kobaisi M., Crawford R. J., Ivanova E. P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano. 2015;9:8458–8467. doi: 10.1021/acsnano.5b03368. [DOI] [PubMed] [Google Scholar]
- [164].Yi X., Gao H. J. Cell interaction with graphene microsheets: Nearorthogonal cutting versus parallel attachment. Nanoscale. 2015;7:5457–5467. doi: 10.1039/c4nr06170e. [DOI] [PubMed] [Google Scholar]
- [165].Dallavalle M., Calvaresi M., Bottoni A., Melle-Franco M., Zerbetto F. Graphene can wreak havoc with cell membranes. ACS Appl. Mater. Interfaces. 2015;7:4406–4414. doi: 10.1021/am508938u. [DOI] [PubMed] [Google Scholar]
- [166].Mangadlao J. D., Santos C. M., Felipe M. J. L. d, Leon A. C. C., Rodrigues D. F., Advincula R. C. On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chem. Commun. 2015;51:2886–2889. doi: 10.1039/c4cc07836e. [DOI] [PubMed] [Google Scholar]
- [167].Hui L. W., Piao J. G., Auletta J., Hu K., Zhu Y. W., Meyer T., Liu H. T., Yang L. H. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces. 2014;6:13183–13190. doi: 10.1021/am503070z. [DOI] [PubMed] [Google Scholar]
- [168].Tan K. H., Sattari S., Donskyi I. S., Cuellar-Camacho J. L., Cheng C., Schwibbert K., Lippitz A., Unger W. E. S., Gorbushina A., Adeli M., et al. Functionalized 2D nanomaterials with switchable binding to investigate graphene-bacteria interactions. Nanoscale. 2018;10:9525–9537. doi: 10.1039/c8nr01347k. [DOI] [PubMed] [Google Scholar]
- [169].Lyon D. Y., Brunet L., Hinkal G. W., Wiesner M. R., Alvarez P. J. J. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett. 2008;8:1539–1543. doi: 10.1021/nl0726398. [DOI] [PubMed] [Google Scholar]
- [170].Niu A. P., Han Y. J., Wu J., Yu N., Xu Q. Synthesis of onedimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior. J. Phys. Chem. C. 2010;114:12728–12735. [Google Scholar]
- [171].West J. D., Marnett L. J. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem. Res. Toxicol. 2006;19:173–194. doi: 10.1021/tx050321u. [DOI] [PubMed] [Google Scholar]
- [172].Gurunathan S., Han J. W., Dayem A. A., Eppakayala V., Kim J. H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine. 2012;7:5901–5914. doi: 10.2147/IJN.S37397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [173].Pang W. C., Wu J. L., Zhang Q. F., Li G. F. Graphene oxide enhanced, radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with high hardness and tensile properties. RSC Adv. 2017;7:55536–55546. [Google Scholar]
- [174].Chen J. N., Wang X. P., Han H. Y. A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanopart. Res. 2013;15:1658. [Google Scholar]
- [175].Gurunathan S., Han J. W., Dayem A. A., Eppakayala V., Park M. R., Kwon D. N., Kim J. H. Antibacterial activity of dithiothreitol reduced graphene oxide. J. Ind. Eng. Chem. 2013;19:1280–1288. [Google Scholar]
- [176].Krishnamoorthy K., Veerapandian M., Zhang L. H., Yun K., Kim S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C. 2012;116:17280–17287. [Google Scholar]
- [177].Giglio S., Jiang J. Y., Saint C. P., Cane D. E., Monis P. T. Isolation and characterization of the gene associated with geosmin production in cyanobacteria. Environ. Sci. Technol. 2008;42:8027–8032. doi: 10.1021/es801465w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [178].Li J. H., Wang G., Zhu H. Q., Zhang M., Zheng X. H., Di Z. F., Liu X. Y., Wang X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 2014;4:4359. doi: 10.1038/srep04359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [179].Carpio I. E. M., Santos C. M., Wei X., Rodrigues D. F. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale. 2012;4:4746–4756. doi: 10.1039/c2nr30774j. [DOI] [PubMed] [Google Scholar]
- [180].Chen J. N., Peng H., Wang X.P., Shao F., Yuan Z. D., Han H. Y. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6:1879–1889. doi: 10.1039/c3nr04941h. [DOI] [PubMed] [Google Scholar]
- [181].Kanchanapally R., Nellore B. P. V., Sinha S. S., Pedraza F., Jones S. J., Pramanik A., Chavva S. R., Tchounwou C., Shi Y. L., Vangara A., et al. Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv. 2015;5:18881–18887. doi: 10.1039/C5RA01321F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [182].Akhavan O., Ghaderi E., Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B. 2011;115:6279–6288. doi: 10.1021/jp200686k. [DOI] [PubMed] [Google Scholar]
- [183].Luan B. Q., Huynh T., Zhao L., Zhou R. H. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions. ACS Nano. 2015;9:663–669. doi: 10.1021/nn506011j. [DOI] [PubMed] [Google Scholar]
- [184].Zhao J. M., Deng B., Lv M., Li J. Y., Zhang Y. J., Jiang H. Q., Peng C., Li J., Shi J. Y., Huang Q., et al. Graphene oxide-based antibacterial cotton fabrics. Adv. Healthc. Mater. 2013;2:1259–1266. doi: 10.1002/adhm.201200437. [DOI] [PubMed] [Google Scholar]
- [185].Karimi L., Yazdanshenas M. E., Khajavi R., Rashidi A., Mirjalili M. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose. 2014;21:3813–3827. [Google Scholar]
- [186].Fan Z. J., Liu B., Wang J. Q., Zhang S. Y., Lin Q. Q., Gong P. W., Ma L. M., Yang S. R. A novel wound dressing based on Ag/graphene–Adv. Funct. Mater. 2014;24:3933–3943. [Google Scholar]
- [187].Zhou Y. Z., Chen R., He T. T., Xu K., Du D., Zhao N., Cheng X. N., Yang J., Shi H. F., Lin Y. H. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl. Mater. Interfaces. 2016;8:15067–15075. doi: 10.1021/acsami.6b03021. [DOI] [PubMed] [Google Scholar]
- [188].Lu B. G., Li T., Zhao H. T., Li X. D., Gao C. T., Zhang S. X., Xie E. Q. Graphene-based composite materials beneficial to wound healing. Nanoscale. 2012;4:2978–2982. doi: 10.1039/c2nr11958g. [DOI] [PubMed] [Google Scholar]
- [189].Sun X. M., Liu Z., Welsher K., Robinson J. T., Goodwin A., Zaric S., Dai H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–212. doi: 10.1007/s12274-008-8021-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [190].Pandey H., Parashar V., Parashar R., Prakash R., Ramteke P. W., Pandey A. C. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale. 2011;3:4104–4108. doi: 10.1039/c1nr10661a. [DOI] [PubMed] [Google Scholar]
- [191].Wang Y., Zhang D., Bao Q., Wu J. J., Wan Y. Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide-drug intercalated layered double hydroxide hybrid films. J. Mater. Chem. 2012;22:23106–23113. [Google Scholar]
- [192].Ghadim E. E., Manouchehri F., Soleimani G., Hosseini H., Kimiagar S., Nafisi S. Adsorption properties of tetracycline onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. PLoS One. 2013;8:e79254. doi: 10.1371/journal.pone.0079254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [193].Huang T. F., Zhang L., Chen H. L., Gao C. J. A cross-linking graphene oxide-polyethyleneimine hybrid film containing ciprofloxacin: One-step preparation, controlled drug release and antibacterial performance. J. Mater. Chem. B. 2015;3:1605–1611. doi: 10.1039/c4tb01896f. [DOI] [PubMed] [Google Scholar]
- [194].Ding H., Zhang F., Zhao C. C., Lv Y. L., Ma G. H., Wei W., Tian Z. Y. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response. ACS Appl. Mater. Interfaces. 2017;9:27396–27401. doi: 10.1021/acsami.7b08824. [DOI] [PubMed] [Google Scholar]
- [195].Mo R., Jiang T., Sun W., Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials. 2015;50:67–74. doi: 10.1016/j.biomaterials.2015.01.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [196].Jiang T., Sun W., Zhu Q., Burns N. A., Khan S. A., Mo R., Gu Z. Furin-mediated sequential delivery of anticancer cytokine and smallmolecule drug shuttled by grapheme. Adv. Mater. 2015;27:1021–1028. doi: 10.1002/adma.201404498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [197].Zeng X. K., McCarthy D. T., Deletic A., Zhang X. W. Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point-of-use water disinfection. Adv. Funct. Mater. 2015;25:4344–4351. [Google Scholar]
- [198].Zeng X. K., Wang Z. Y., Meng N., McCarthy D. T., Deletic A., Pan J. H., Zhang X. W. Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Appl. Catal. B: Environ. 2017;202:33–41. [Google Scholar]
- [199].Zeng X. K., Wang Z. Y., Wang G., Gengenbach T. R., McCarthy D. T., Deletic A., Yu J. G., Zhang X. W. Highly dispersed TiO2 nanocrystals and WO3 Nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl. Catal. B: Environ. 2017;218:163–173. [Google Scholar]
- [200].Nellore B. P. V., Kanchanapally R., Pedraza F., Sinha S. S., Pramanik A., Hamme A. T., Arslan Z., Sardar D., Ray P. C. Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces. 2015;7:19210–19218. doi: 10.1021/acsami.5b05012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [201].Armani M. A., Abu-Taleb A., Remalli N., Abdullah M., Srikanth V. V. S. S., Labhasetwar N. K. Dragon’s blood-aided synthesis of Ag/Ag2O core/shell nanostructures and Ag/Ag2O decked multi-layered graphene for efficient As(III) uptake from water and antibacterial activity. RSC Adv. 2016;6:44145–44153. [Google Scholar]
- [202].Wang Y. L., El-Deen A. G., Li P., Oh B. H. L., Guo Z. R., Khin M. M., Vikhe Y. S., Wang J., Hu R. G., Boom R. M., et al. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano. 2015;9:10142–10157. doi: 10.1021/acsnano.5b03763. [DOI] [PubMed] [Google Scholar]