Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;7(3):243–253. doi: 10.1385/NMM:7:3:243

T-cells in human encephalitis

Christian G Bien 1,, Jan Bauer 2
PMCID: PMC7090662  PMID: 16247184

Abstract

Encephalitis literally means inflammation of the brain. In general, this inflammation can result from a viral or bacterial infection in the brain itself or alternatively from a secondary autoimmune reaction against an infection or a tumor in the rest of the body. Besides this, encephalitis is present in (believed autoimmune) diseases with unknown etiology, such as multiple sclerosis or Rasmussen encephalitis (RE). This article summarizes the existing data on the role of T-cells in the pathogenesis of three types of human encephalitis: RE, paraneoplastic encephalomyelitis, and virus encephalitis. In all of them, T-cells play a major role in disease pathogenesis, mainly mediated by major histocompatiblity complex class I-restricted CD8+ T-lymphocytes.

Index Entries: Human, T-cells, Rasmussen encephalitis, paraneoplastic encephalomyelitis, virus encephalitis

References

  1. Achim C. L., Morey M. K., Wiley C. A. Expression of major histocompatibility complex and HIV antigens within the brains of AIDS patients. AIDS. 1991;5:535–541. doi: 10.1097/00002030-199105000-00009. [DOI] [PubMed] [Google Scholar]
  2. Achim C. L., Wiley C. A. Expression of major histocompatibility complex antigens in the brains of patients with progressive multifocal leukoen-cephalopathy. J. Neuropathol. Exp. Neurol. 1992;51:257–263. doi: 10.1097/00005072-199205000-00003. [DOI] [PubMed] [Google Scholar]
  3. Alber M. L., Austin L. M., Darnell R. B. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann. Neurol. 2000;47:9–17. [PubMed] [Google Scholar]
  4. Albert M. L., Darnell J. C., Bender A., Francisco L. M., Bhardwaj N., Darnell R. B. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat. Med. 1998;4:1321–1324. doi: 10.1038/3315. [DOI] [PubMed] [Google Scholar]
  5. An S. F., Ciardi A., Giometto B., Scaravilli T., Gray F., Scaravilli F. Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol. (Berl) 1996;91:494–503. doi: 10.1007/s004010050457. [DOI] [PubMed] [Google Scholar]
  6. Anlar B., Soylemezoglu F., Aysun S., Kose G., Belen D., Yalaz K. Tissue inflammatory response in subacute sclerosing panencephalitis (SSPE) J. Child Neurol. 2001;16:895–900. doi: 10.1177/088307380101601206. [DOI] [PubMed] [Google Scholar]
  7. Babbe H., Roers A., Waisman A., et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 2000;192:393–404. doi: 10.1084/jem.192.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Basta S., Bennink J. R. A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol. 2003;16:231–242. doi: 10.1089/088282403322396064. [DOI] [PubMed] [Google Scholar]
  9. Bataller L., Dalmau J. O. Paraneoplastic disorders of the central nervous system: update on diagnostic criteria and treatment. Semin. Neurol. 2004;24:461–471. doi: 10.1055/s-2004-861540. [DOI] [PubMed] [Google Scholar]
  10. Bauer J., Stadelmann C., Bancher C., Jellinger K., Lassmann H. Apoptosis of T lymphocytes in acute disseminated encephalomyelitis. Acta Neuropathol. (Berl) 1999;97:543–546. doi: 10.1007/s004010051028. [DOI] [PubMed] [Google Scholar]
  11. Benyahia B., Liblau R., Merle Beral H., Tourani J. M., Dalmau J., Delattre J. Y. Cell-mediated autoimmunity in paraneoplastic neurological syndromes with anti-Hu antibodies. Ann. Neurol. 1999;45:162–167. doi: 10.1002/1531-8249(199902)45:2<162::aid-ana5>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  12. Bergmann C. C., Parra B., Hinton D. R., Chandran R., Morrison M., Stohlman S. A. Perforin-mediated effector function within the central nervous system requires IFN-gamma-mediated MHC up-regulation. J. Immunol. 2003;170:3204–3213. doi: 10.4049/jimmunol.170.6.3204. [DOI] [PubMed] [Google Scholar]
  13. Bergmann C. C., Parra B., Hinton D. R., Ramakrishna C., Dowdell K. C., Stohlman S. A. Perforin and gamma interferon-mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells. J. Virol. 2004;78:1739–1750. doi: 10.1128/JVI.78.4.1739-1750.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bernal F., Graus F., Pifarre A., Saiz A., Benyahia B., Ribalta T. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. (Berl) 2002;103:509–515. doi: 10.1007/s00401-001-0498-0. [DOI] [PubMed] [Google Scholar]
  15. Bien C. G., Bauer J., Deckwerth T. L., et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann. Neurol. 2002;51:311–318. doi: 10.1002/ana.10100. [DOI] [PubMed] [Google Scholar]
  16. Bien C. G., Gleissner U., Sassen R., Widman G., Urbach H., Elger C. E. An open study of tacrolimus therapy in Rasmussen encephalitis. Neurology. 2004;62:2106–2109. doi: 10.1212/01.wnl.0000128044.94294.87. [DOI] [PubMed] [Google Scholar]
  17. Bien C. G., Granata T., Antozzi C., et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128:454–471. doi: 10.1093/brain/awh415. [DOI] [PubMed] [Google Scholar]
  18. Bien C. G., Widman G., Urbach H., et al. The natural history of Rasmussen’s encephalitis. Brain. 2002;125:1751–1759. doi: 10.1093/brain/awf176. [DOI] [PubMed] [Google Scholar]
  19. Booss J., Esiri M. M. Viral Encephalitis in Humans. Washington DC: ASM Press; 2003. [Google Scholar]
  20. Booss J., Esiri M. M., Tourtellotte W. W., Mason D. Y. Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 1983;62:219–232. doi: 10.1016/0022-510x(83)90201-0. [DOI] [PubMed] [Google Scholar]
  21. Brankin B., Hart M. N., Cosby S. L., Fabry Z., Allen I. V. Adhesion molecule expression and lymphocyte adhesion to cerebral endothelium: effects of measles virus and herpes simplex 1 virus. J. Neuroimmunol. 1995;56:1–8. doi: 10.1016/0165-5728(94)00110-a. [DOI] [PubMed] [Google Scholar]
  22. Brierley J. B., Corsellis J. A. N., Hierons R., Nevin S. Subacute encephalitis of later adult life mainly affecting the limbic areas. Brain. 1960;83:357–368. [Google Scholar]
  23. Cher L. M., Hochberg F. H., Teruya J., et al. Therapy for paraneoplastic neurologic syndromes in six patients with protein A column immunoadsorption. Cancer. 1995;75:1678–1683. doi: 10.1002/1097-0142(19950401)75:7<1678::aid-cncr2820750719>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  24. Corradi J. P., Yang C., Darnell J. C., Dalmau J., Darnell R. B. A post-transcriptional regulatory mechanism restricts expression of the paraneoplastic cerebellar degeneration antigen cdr2 to immune privileged tissues. J. Neurosci. 1997;17:1406–1415. doi: 10.1523/JNEUROSCI.17-04-01406.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Corsellis J. A., Goldberg G. J., Norton A. R. “Limbic encephalitis” and its association with carcinoma. Brain. 1968;91:481–496. doi: 10.1093/brain/91.3.481. [DOI] [PubMed] [Google Scholar]
  26. Cunningham J., Graus F., Anderson N., Posner J. B. Partial characterization of the Purkinje cell antigens in paraneoplastic cerebellar degeneration. Neurology. 1986;36:1163–1168. doi: 10.1212/wnl.36.9.1163. [DOI] [PubMed] [Google Scholar]
  27. Dalmau J., Furneaux H. M., Gralla R. J., Kris M. G., Posner J. B. Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer—a quantitative western blot analysis. Ann. Neurol. 1990;27:544–552. doi: 10.1002/ana.410270515. [DOI] [PubMed] [Google Scholar]
  28. Dalmau J., Furneaux H. M., Rosenblum M. K., Graus F., Posner J. B. Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuronopathy. Neurology. 1991;41:1757–1764. doi: 10.1212/wnl.41.11.1757. [DOI] [PubMed] [Google Scholar]
  29. Darnell J. C., Albert M. L., Darnell R. B. Cdr2, a target antigen of naturally occuring human tumor immunity, is widely expressed in gynecological tumors. Cancer Res. 2000;60:2136–2139. [PubMed] [Google Scholar]
  30. Du Pasquier R. A., Kuroda M. J., Zheng Y., Jean-Jacques J., Letvin N. L., Koralnik I. J. A prospective study demonstrates an association between JC virus-specific cytotoxic T lymphocytes and the early control of progressive multifocal leukoencephalopathy. Brain. 2004;127:1970–1978. doi: 10.1093/brain/awh215. [DOI] [PubMed] [Google Scholar]
  31. Du Pasquier R. A., Schmitz J. E., Jean-Jacques J., et al. Detection of JC virus-specific cytotoxic T lymphocytes in healthy individuals. J. Virol. 2004;78:10,206–10,210. doi: 10.1128/JVI.78.18.10206-10210.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Farrell M. A., Droogan O., Secor D. L., Poukens V., Quinn B., Vinters H. V. Chronic encephalitis associated with epilepsy: immunohistochemical and ultrastructural studies. Acta Neuropathol. Berl. 1995;89:313–321. doi: 10.1007/BF00309624. [DOI] [PubMed] [Google Scholar]
  33. Frei K., Leist T. P., Meager A., et al. Production of B cell stimulatory factor-2 and interferon gamma in the central nervous system during viral meningitis and encephalitis. Evaluation in a murine model infection and in patients. J. Exp. Med. 1988;168:449–453. doi: 10.1084/jem.168.1.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Furneaux H. M., Rosenblum M. K., Dalmau J., et al. Selective expression of Purkinje-cell antigens in tumor tissue from patients with paraneoplastic cerebellar degeneration. N. Engl. J. Med. 1990;322:1844–1851. doi: 10.1056/NEJM199006283222604. [DOI] [PubMed] [Google Scholar]
  35. Gay F. W., Drye T. J., Dick G. W., Esiri M. M. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain. 1997;120:1461–1483. doi: 10.1093/brain/120.8.1461. [DOI] [PubMed] [Google Scholar]
  36. Gogate N., Swoveland P., Yamabe T., et al. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis. J. Neuropathol. Exp. Neurol. 1996;55:435–443. doi: 10.1097/00005072-199604000-00006. [DOI] [PubMed] [Google Scholar]
  37. Graus F., Abos J., Roquer J., Mazzara R., Pereira A. Effect of plasmapheresis on serum and CSF autoantibody levels in CNS paraneoplastic syndromes. Neurology. 1990;40:1621–1623. doi: 10.1212/wnl.40.10.1621. [DOI] [PubMed] [Google Scholar]
  38. Graus F., Elkon K. B., Cordon-Cardo C., Posner J. B. Sensory neuronopathy and small cell lung cancer. Antineuronal antibody that also reacts with the tumor. Am. J. Med. 1986;80:45–52. doi: 10.1016/0002-9343(86)90047-1. [DOI] [PubMed] [Google Scholar]
  39. Graus F., Ribalta T., Campo E., Monforte R., Urbano A., Rozman C. Immunohistochemical analysis of the immune reaction in the nervous system in paraneoplastic encephalomyelitis. Neurology. 1990;40:219–222. doi: 10.1212/wnl.40.2.219. [DOI] [PubMed] [Google Scholar]
  40. Gultekin S. H., Rosenfeld M. R., Voltz R., Eichen J., Posner J. B., Dalmau J. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123:1481–1494. doi: 10.1093/brain/123.7.1481. [DOI] [PubMed] [Google Scholar]
  41. Hart Y. M., Andermann F., Fish D. R., et al. Chronic encephalitis and epilepsy in adults and adolescents: a variant of Rasmussen’s syndrome? Neurology. 1997;48:418–424. doi: 10.1212/wnl.48.2.418. [DOI] [PubMed] [Google Scholar]
  42. Hayashi T., Morimoto C., Burks J. S., Kerr C., Hauser S. L. Dual-label immunocytochemistry of the active multiple sclerosis lesion: major histocompatibility complex and activation antigens. Ann. Neurol. 1988;24:523–531. doi: 10.1002/ana.410240408. [DOI] [PubMed] [Google Scholar]
  43. Henson R. A., Hoffman H. L., Urich H. Encephalomyelitis with carcinoma. Brain. 1965;88:449–464. doi: 10.1093/brain/88.3.449. [DOI] [PubMed] [Google Scholar]
  44. Hodgson P. D., Grant M. D., Michalak T. I. Perforin and Fas/Fas ligand-mediated cytotoxicity in acute and chronic woodchuck viral hepatitis. Clin. Exp. Immunol. 1999;118:63–70. doi: 10.1046/j.1365-2249.1999.01010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Houtman J. J., Fleming J. O. Pathogenesis of mouse hepatitis virus-induced demyelination. J. Neurovirol. 1995;2:361–376. doi: 10.3109/13550289609146902. [DOI] [PubMed] [Google Scholar]
  46. Hudson S. J., Streilein J. W. Functional cytotoxic T cells are associated with focal lesions in the brains of SJL mice with experimental herpes simplex encephalitis. J. Immunol. 1994;152:5540–5547. [PubMed] [Google Scholar]
  47. Jaeckle K. A., Graus F., Houghton A., Cardon-Cardo C., Nielsen S. L., Posner J. B. Autoimmune response of patients with paraneoplastic cerebellar degeneration to a Purkinje cell cytoplasmic protein antigen. Ann. Neurol. 1985;18:592–600. doi: 10.1002/ana.410180513. [DOI] [PubMed] [Google Scholar]
  48. Keime-Guibert F., Graus F., Broet P., et al. Clinical outcome of patients with anti-Hu-associated encephalomyelitis after treatment of the tumor. Neurology. 1999;53:1719–1723. doi: 10.1212/wnl.53.8.1719. [DOI] [PubMed] [Google Scholar]
  49. Keime-Guibert F., Graus F., Fleury A., et al. Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J. Neurol. Neurosurg. Psychiatry. 2000;68:479–482. doi: 10.1136/jnnp.68.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kennedy P. G., Barrass J. D., Graham D. I., Clements G. B. Studies on the pathogenesis of neurological diseases associated with Varicella-Zoster virus. Neuropathol. Appl. Neurobiol. 1990;16:305–316. doi: 10.1111/j.1365-2990.1990.tb01265.x. [DOI] [PubMed] [Google Scholar]
  51. Kleinschmidt-DeMasters B. K., Tyler K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. NEJM. 2005;353:369–374. doi: 10.1056/NEJMoa051782. [DOI] [PubMed] [Google Scholar]
  52. Langer-Gould A., Atlas S. W., Green A. J., et al. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. NEJM. 2005;353:375–381. doi: 10.1056/NEJMoa051847. [DOI] [PubMed] [Google Scholar]
  53. Li Y., Uccelli A., Laxer K. D., et al. Local-clonal expansion of infiltrating T lymphocytes in chronic encephalitis of Rasmussen. J. Immunol. 1997;158:1428–1437. [PubMed] [Google Scholar]
  54. Lieberman J., Manjunath N., Shankar P. Avoiding the kiss of death: how HIV and other chronic viruses survive. Curr. Opin. Immunol. 2002;14:478–486. doi: 10.1016/s0952-7915(02)00366-7. [DOI] [PubMed] [Google Scholar]
  55. Liebert U. G., ter Meulen V. Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. J. Gen. Virol. 1987;68:1715–1722. doi: 10.1099/0022-1317-68-6-1715. [DOI] [PubMed] [Google Scholar]
  56. Linda H., Hammarberg H., Cullheim S., Levinovitz A., Khademi M., Olsson T. Expression of MHC class I and beta2-microglobulin in rat spinal motoneurons: regulatory influences by IFN-gamma and axotomy. Exp. Neurol. 1998;150:282–295. doi: 10.1006/exnr.1997.6768. [DOI] [PubMed] [Google Scholar]
  57. Liu T., Chambers T. J. Yellow fever virus encephalitis: properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4+lymphocytes. J. Virol. 2001;75:2107–2118. doi: 10.1128/JVI.75.5.2107-2118.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Mantegazza R., Bernasconi P., Baggi F., et al. Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J. Neuroimmunol. 2002;131:179–185. doi: 10.1016/s0165-5728(02)00261-8. [DOI] [PubMed] [Google Scholar]
  59. Morris M. M., Dyson H., Baker D., Harbige L. S., Fazakerley J. K., Amor S. Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. J. Neuroimmunol. 1997;74:185–197. doi: 10.1016/s0165-5728(96)00786-2. [DOI] [PubMed] [Google Scholar]
  60. Murray P. D., McGavern D. B., Lin X., et al. Perforin-dependent neurologic injury in a viral model of multiple sclerosis. J. Neurosci. 1998;18:7306–7314. doi: 10.1523/JNEUROSCI.18-18-07306.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Murray P. D., Pavelko K. D., Leibowitz J., Lin X., Rodriguez M. CD4(+) and CD8(+) T cells make discrete contributions to demyelination and neurologic disease in a viral model of multiple sclerosis. J. Virol. 1998;72:7320–7329. doi: 10.1128/jvi.72.9.7320-7329.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Nagano I., Nakamura S., Yoshioka M., Kogure K. Immunocytochemical analysis of the cellular infiltrate in brain lesions in subacute sclerosing panencephalitis. Neurology. 1991;41:1639–1642. doi: 10.1212/wnl.41.10.1639. [DOI] [PubMed] [Google Scholar]
  63. Nicoll J. A., Love S., Kinrade E. Distribution of herpes simplex virus DNA in the brains of human long-term survivors of encephalitis. Neurosci. Lett. 1993;157:215–218. doi: 10.1016/0304-3940(93)90740-c. [DOI] [PubMed] [Google Scholar]
  64. Nicoll J. A., Maitland N. J., Love S. Autopsy neuropathological findings in burnt out’ herpes simplex encephalitis and use of the polymerase chain reaction to detect viral DNA. Neuropathol. Appl. Neurobiol. 1991;17:375–382. doi: 10.1111/j.1365-2990.1991.tb00737.x. [DOI] [PubMed] [Google Scholar]
  65. Nicoll J. A., Maitland N. J., Love S. Use of the polymerase chain reaction to detect herpes simplex virus DNA in paraffin sections of human brain at necropsy. J. Neurol. Neurosurg. Psychiatry. 1991;54:167–168. doi: 10.1136/jnnp.54.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Noske K., Bilzer T., Planz O., Stitz L. Virus-specific CD4+ T cells eliminate borna disease virus from the brain via induction of cytotoxic CD8+ T cells. J. Virol. 1998;72:4387–4395. doi: 10.1128/jvi.72.5.4387-4395.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Oguni H., Andermann F., Rasmussen T. B. The syndrome of chronic encephalitis and epilepsy. A study based on the MNI series of 48 cases. Adv. Neurol. 1992;57:419–433. [PubMed] [Google Scholar]
  68. Okano H. J., Park W. Y., Corradi J. P., Darnell R. B. The cytoplasmic Purkinje onconeural antigen cdr2 down-regulates c-Myc function: implications for neuronal and tumor cell survival. Genes Dev. 1999;13:2087–2097. doi: 10.1101/gad.13.16.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Panegyres P. K., Reading M. C., Esiri M. M. The inflammatory reaction of paraneoplastic ganglionitis and encephalitis: an immunohistochemical study. J. Neurol. 1993;240:93–97. doi: 10.1007/BF00858724. [DOI] [PubMed] [Google Scholar]
  70. Pardo C. A., Vining E. P., Guo L., Skolasky R. L., Carson B. S., Freeman J. M. The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia. 2004;45:516–526. doi: 10.1111/j.0013-9580.2004.33103.x. [DOI] [PubMed] [Google Scholar]
  71. Parra B., Hinton D. R., Marten N. W., et al. IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 1999;162:1641–1647. [PubMed] [Google Scholar]
  72. Pellkofer H., Schubart A. S., Hoftberger R., et al. Modelling paraneoplastic CNS disease: T-cells specific for the onconeuronal antigen PNMA1 mediate autoimmune encephalomyelitis in the rat. Brain. 2004;127:1822–1830. doi: 10.1093/brain/awh205. [DOI] [PubMed] [Google Scholar]
  73. Petito C. K., Adkins B., McCarthy M., Roberts B., Khamis I. CD4+ and CD8+ cells accumulate in the brains of acquired immunodeficiency syndrome patients with human immunodeficiency virus encephalitis. J. Neurovirol. 2003;9:36–44. doi: 10.1080/13550280390173391. [DOI] [PubMed] [Google Scholar]
  74. Pewe L., Perlman S. Cutting edge: CD8 T cell-mediated demyelination is IFN-gamma dependent in mice infected with a neurotropic coronavirus. J. Immunol. 2002;168:1547–1551. doi: 10.4049/jimmunol.168.4.1547. [DOI] [PubMed] [Google Scholar]
  75. Planz O., Bilzer T., Stitz L. Immunopathogenic role of T-cell subsets in Borna disease virus-induced progressive encephalitis. J. Virol. 1995;69:896–903. doi: 10.1128/jvi.69.2.896-903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ploegh H. L. Viral strategies of immune evasion. Science. 1998;280:248–253. doi: 10.1126/science.280.5361.248. [DOI] [PubMed] [Google Scholar]
  77. Pullen L. C., Miller S. D., Dal Canto M. C., Kim B. S. Class I-deficient resistant mice intracerebrally inoculated with Theiler’s virus show an increased T cell response to viral antigens and susceptibility to demyelination. Eur. J. Immunol. 1993;23:2287–2293. doi: 10.1002/eji.1830230935. [DOI] [PubMed] [Google Scholar]
  78. Rasmussen T., Olszewski J., Lloyd-Smith D. Focal seizures due to chronic localized encephalitis. Neurology. 1958;8:435–445. doi: 10.1212/wnl.8.6.435. [DOI] [PubMed] [Google Scholar]
  79. Roberts W. K., Darnell R. B. Neuroimmunology of the paraneoplastic neurological degenerations. Curr. Opin. Immunol. 2004;16:616–622. doi: 10.1016/j.coi.2004.07.009. [DOI] [PubMed] [Google Scholar]
  80. Rodriguez M., Pavelko K. D., Njenga M. K., Logan W. C., Wettstein P. J. The balance between persistent virus infection and immune cells determines demyelination. J. Immunol. 1996;157:5699–5709. [PubMed] [Google Scholar]
  81. Rogers S. W., Andrews P. I., Gahring L. C., et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265:648–651. doi: 10.1126/science.8036512. [DOI] [PubMed] [Google Scholar]
  82. Schneider-Schaulies J., Schneider-Schaulies S., ter-Meulen V. Differential induction of cytokines by primary and persistent measles virus infections in human glial cells. Virology. 1993;195:219–228. doi: 10.1006/viro.1993.1363. [DOI] [PubMed] [Google Scholar]
  83. Sheridan C. Tysabri raises alarm bells on drug class. Nat. Biotechnol. 2005;23:397–398. doi: 10.1038/nbt0405-397. [DOI] [PubMed] [Google Scholar]
  84. Shrestha B., Diamond M. S. Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 2004;78:8312–8321. doi: 10.1128/JVI.78.15.8312-8321.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Sillevis Smitt P. A., Manley G. T., Posner J. B. Immunization with the paraneoplastic encephalomyelitis antigen HuD does not cause neurologic disease in mice. Neurology. 1995;45:1873–1878. doi: 10.1212/wnl.45.10.1873. [DOI] [PubMed] [Google Scholar]
  86. Soilu-Hanninen M., Roytta M., Salmi A. A., Salonen R. Semliki Forest virus infection leads to increased expression of adhesion molecules on splenic T-cells and on brain vascular endothelium. J. Neurovirol. 1997;3:350–360. doi: 10.3109/13550289709030749. [DOI] [PubMed] [Google Scholar]
  87. Stevenson P. G., Hawke S., Bangham C. R. Protection against lethal influenza virus encephalitis by intranasally primed CD8+ memory T cells. J. Immunol. 1996;157:3065–3073. [PubMed] [Google Scholar]
  88. Szabo A., Dalmau J., Manley G., et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell. 1991;67:325–333. doi: 10.1016/0092-8674(91)90184-z. [DOI] [PubMed] [Google Scholar]
  89. Tanaka K., Tanaka M., Inuzuka T., Nakano R., Tsuji S. Cytotoxic T-lymphocyte-mediated cell death in paraneoplastic sensory neuronopathy with anti-Hu antibody. J. Neurol. Sci. 1999;163:159–162. doi: 10.1016/s0022-510x(99)00029-5. [DOI] [PubMed] [Google Scholar]
  90. Tanaka M., Tanaka K., Onodera O., et al. Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. Clin. Neurol. Neurosurg. 1995;97:95–100. doi: 10.1016/0303-8467(95)00005-5. [DOI] [PubMed] [Google Scholar]
  91. Tekgul H., Polat M., Kitis O., et al. T-cell subsets and interleukin-6 response in Rasmussen’s encephalitis. Pediatr. Neurol. 2005;33(1):39–45. doi: 10.1016/j.pediatrneurol.2005.01.007. [DOI] [PubMed] [Google Scholar]
  92. van der Most R. G., Murali-Krishna K., Ahmed R. Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis. Int. Immunol. 2003;15:119–125. doi: 10.1093/intimm/dxg009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Verschuuren J., Chuang L., Rosenblum M. K., et al. Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol. Berl. 1996;91:519–525. doi: 10.1007/s004010050460. [DOI] [PubMed] [Google Scholar]
  94. Voltz R. Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis, and therapy. Lancet Neurol. 2002;1:294–305. doi: 10.1016/s1474-4422(02)00135-7. [DOI] [PubMed] [Google Scholar]
  95. Voltz R., Dalmau J., Posner J. B., Rosenfeld M. R. T-cell receptor analysis in anti-Hu associated paraneoplastic encephalomyelitis. Neurology. 1998;51:1146–1150. doi: 10.1212/wnl.51.4.1146. [DOI] [PubMed] [Google Scholar]
  96. Wang F. I., Stohlman S. A., Fleming J. O. Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J. Neuroimmunol. 1990;30:31–41. doi: 10.1016/0165-5728(90)90050-W. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Watanabe R., Wege H., ter Meulen V. Comparative analysis of coronavirus JHM-induced demyelinating encephalomyelitis in Lewis and Brown Norway rats. Lab. Invest. 1987;57:375–384. [PubMed] [Google Scholar]
  98. Watson R., Jiang Y., Bermudez I., et al. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology. 2004;63:43–50. doi: 10.1212/01.wnl.0000132651.66689.0f. [DOI] [PubMed] [Google Scholar]
  99. Wiendl H., Bien C. G., Bernasconi P., et al. GluR3 antibodies: Prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology. 2001;57:1511–1514. doi: 10.1212/wnl.57.8.1511. [DOI] [PubMed] [Google Scholar]
  100. Woodroofe M. N., Bellamy A. S., Feldmann M., Davison A. N., Cuzner M. L. Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J. Neurol. Sci. 1986;74:135–152. doi: 10.1016/0022-510x(86)90100-0. [DOI] [PubMed] [Google Scholar]
  101. Wu G. F., Dandekar A. A., Pewe L., Perlman S. CD4 and CD8 T-cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 2000;165:2278–2286. doi: 10.4049/jimmunol.165.4.2278. [DOI] [PubMed] [Google Scholar]

Articles from Neuromolecular Medicine are provided here courtesy of Nature Publishing Group

RESOURCES