Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2014 Dec 22;29(6):393–402. doi: 10.1007/s12250-014-3530-y

Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice

Zhangsheng Yang 1, Jun Du 2, Gang Chen 1, Jie Zhao 1, Xuanming Yang 1, Lishan Su 3, Genhong Cheng 4, Hong Tang 1,
PMCID: PMC7090691  PMID: 25547683

Abstract

It remains challenging to develop animal models of lung infection and severe pneumonia by severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome cornavirus (MERS-CoV) without high level of containment. This inevitably hinders understanding of virushost interaction and development of appropriate countermeasures. Here we report that intranasal inoculation of sublethal doses of murine coronavirus mouse hepatitis virus A-59 (MHV-A59), a hepatic and neuronal tropic coronavirus, can induce acute pneumonia and severe lung injuries in C57BL/6 mice. Inflammatory leukocyte infiltrations, hemorrhages and fibrosis of alveolar walls can be observed 2–11 days after MHV-A59 infection. This pathological manifestation is associated with dramatical elevation of tissue IP-10 and IFN-γ and moderate increase of TNF-α and IL-1β, but inability of anti-viral type I interferon response. These results suggest that intranasal infection of MHV-A59 would serve as a surrogate mouse model of acute respiratory distress syndrome by SARS-CoV and MERS-CoV infections.

Keywords: coronavirus, MHV-A59, pneumonia, inflammation, cytokine

References

  1. Aparicio J L, Pena C, Retegui L A. Autoimmune hepatitis-like disease in C57BL/6 mice infected with mouse hepatitis virus A59. Int Immunopharmacol. 2011;11:1591–1598. doi: 10.1016/j.intimp.2011.05.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barthold S W, Smith A L. Mouse hepatitis virus strain—related patterns of tissue tropism in suckling mice. Arch Virol. 1984;81:103–112. doi: 10.1007/BF01309300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biddison W E, Cruikshank W W, Center D M, Pelfrey C M, Taub D D, Turner R V. CD8+ myelin peptide-specific T cells can chemoattract CD4+ myelin peptide-specific T cells: importance of IFN-inducible protein 10. J Immunol. 1998;160:444–448. [PubMed] [Google Scholar]
  4. Chan J F, Li K S, To K K, Cheng V C, Chen H, Yuen K Y. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect. 2012;65:477–489. doi: 10.1016/j.jinf.2012.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen J, Subbarao K. The Immunobiology of SARS. Annu Rev Immunol. 2007;25:443–472. doi: 10.1146/annurev.immunol.25.022106.141706. [DOI] [PubMed] [Google Scholar]
  6. Chesler D A, Reiss C S. The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev. 2002;13:441–454. doi: 10.1016/S1359-6101(02)00044-8. [DOI] [PubMed] [Google Scholar]
  7. Chu H, Zhou J, Wong B H, Li C, Cheng Z S, Lin X, Poon V K, Sun T, Lau C C, Chan J F, To K K, Chan K H, Lu L, Zheng B J, Yuen K Y. Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology. 2014;454–455:197–205. doi: 10.1016/j.virol.2014.02.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coleman C M, Matthews K L, Goicochea L, Frieman M B. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J Gen Virol. 2014;95:408–412. doi: 10.1099/vir.0.060640-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coutelier J P, van der Logt J T, Heessen F W, Warnier G, Van Snick J. IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med. 1987;165:64–69. doi: 10.1084/jem.165.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Day C W, Baric R, Cai S X, Frieman M, Kumaki Y, Morrey J D, Smee D F, Barnard D L. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 2009;395:210–222. doi: 10.1016/j.virol.2009.09.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Albuquerque N, Baig E, Ma X, Zhang J, He W, Rowe A, Habal M, Liu M, Shalev I, Downey G P, Gorczynski R, Butany J, Leibowitz J, Weiss S R, McGilvray I D, Phillips M J, Fish E N, Levy G A. Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J Virol. 2006;80:10382–10394. doi: 10.1128/JVI.00747-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T, Lackemeyer M G, Martellaro C, Milne-Price S, Haddock E, Haagmans B L, Feldmann H, Munster V J. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLoS One. 2013;8:e69127. doi: 10.1371/journal.pone.0069127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DeAlbuquerque N, Baig E, Xuezhong M, Shalev I, Phillips M J, Habal M, Leibowitz J, McGilvray I, Butany J, Fish E, Levy G. Murine hepatitis virus strain 1 as a model for severe acute respiratory distress syndrome (SARS) Adv Exp Med Biol. 2006;581:373–378. doi: 10.1007/978-0-387-33012-9_66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Devitt E. Lack of small animal model hinders MERS coronavirus research. Nat Med. 2013;19:952. doi: 10.1038/nm0813-952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity. 2002;17:251–263. doi: 10.1016/S1074-7613(02)00390-4. [DOI] [PubMed] [Google Scholar]
  16. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt H R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier R A, Berger A, Burguiere A M, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra J C, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk H D, Osterhaus A D, Schmitz H, Doerr H W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  17. Falzarano D, de Wit E, Feldmann F, Rasmussen A L, Okumura A, Peng X, Thomas M J, van Doremalen N, Haddock E, Nagy L, LaCasse R, Liu T, Zhu J, McLellan J S, Scott D P, Katze M G, Feldmann H, Munster V J. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog. 2014;10:e1004250. doi: 10.1371/journal.ppat.1004250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Farrar M A, Schreiber R D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol. 1993;11:571–611. doi: 10.1146/annurev.iy.11.040193.003035. [DOI] [PubMed] [Google Scholar]
  19. Frieman M, Yount B, Agnihothram S, Page C, Donaldson E, Roberts A, Vogel L, Woodruff B, Scorpio D, Subbarao K, Baric R S. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol. 2012;86:884–897. doi: 10.1128/JVI.05957-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ge X Y, Li J L, Yang X L, Chmura A A, Zhu G, Epstein J H, Mazet J K, Hu B, Zhang W, Peng C, Zhang Y J, Luo C M, Tan B, Wang N, Zhu Y, Crameri G, Zhang S Y, Wang L F, Daszak P, Shi Z L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–538. doi: 10.1038/nature12711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Godfraind C, Holmes K V, Coutelier J P. Thymus involution induced by mouse hepatitis virus A59 in BALB/c mice. J Virol. 1995;69:6541–6547. doi: 10.1128/jvi.69.10.6541-6547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gombold J L, Hingley S T, Weiss S R. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J Virol. 1993;67:4504–4512. doi: 10.1128/jvi.67.8.4504-4512.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Graham R L, Donaldson E F, Baric R S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013;11:836–848. doi: 10.1038/nrmicro3143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, Deng Y, Yang L, Li J, Cai J, Qiu L, Wen K, Xu X, Jiang S. Expression of elevated levels of pro-inflamatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol. 2006;210:288–297. doi: 10.1002/path.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hemmila E, Turbide C, Olson M, Jothy S, Holmes K V, Beauchemin N. Ceacam1a-/- mice are completely resistant to infection by murine coronavirus mouse hepatitis virus A59. J Virol. 2004;78:10156–10165. doi: 10.1128/JVI.78.18.10156-10165.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huang K J, Su I J, Theron M, Wu Y C, Lai S K, Liu C C, Lei H Y. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005;75:185–194. doi: 10.1002/jmv.20255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q, Deng P. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med. 2005;171:850–857. doi: 10.1164/rccm.200407-857OC. [DOI] [PubMed] [Google Scholar]
  28. Kim J C, Spence R A, Currier P F, Lu X, Denison M R. Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology. 1995;208:1–8. doi: 10.1006/viro.1995.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim K D, Zhao J, Auh S, Yang X, Du P, Tang H, Fu Y X. Adaptive immune cells temper initial innate responses. Nat Med. 2007;13:1248–1252. doi: 10.1038/nm1207-1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ksiazek T G, Erdman D, Goldsmith C S, Zaki S R, Peret T, Emery S, Tong S, Urbani C, Comer J A, Lim W, Rollin P E, Dowell S F, Ling A E, Humphrey C D, Shieh W J, Guarner J, Paddock C D, Rota P, Fields B, DeRisi J, Yang J Y, Cox N, Hughes J M, LeDuc J W, Bellini W J, Anderson L J. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  31. Lau S K, Lau C C, Chan K H, Li C P, Chen H, Jin D Y, Chan J F, Woo P C, Yuen K Y. Delayed induction of proinflamatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol. 2013;94:2679–2690. doi: 10.1099/vir.0.055533-0. [DOI] [PubMed] [Google Scholar]
  32. Lau S K, Woo P C, Li K S, Huang Y, Tsoi H W, Wong B H, Wong S S, Leung S Y, Chan K H, Yuen K Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–14045. doi: 10.1073/pnas.0506735102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lavi E, Gilden D H, Highkin M K, Weiss S R. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab Anim Sci. 1986;36:130–135. [PubMed] [Google Scholar]
  34. Lavi E, Gilden D H, Wroblewska Z, Rorke L B, Weiss S R. Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology. 1984;34:597–603. doi: 10.1212/WNL.34.5.597. [DOI] [PubMed] [Google Scholar]
  35. Leibowitz J L, Srinivasa R, Williamson S T, Chua M M, Liu M, Wu S, Kang H, Ma X Z, Zhang J, Shalev I, Smith R, Phillips M J, Levy G A, Weiss S R. Genetic determinants of mouse hepatitis virus strain 1 pneumovirulence. J Virol. 2010;84:9278–9291. doi: 10.1128/JVI.00330-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein J H, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton B T, Zhang S, Wang L F. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–679. doi: 10.1126/science.1118391. [DOI] [PubMed] [Google Scholar]
  37. Loetscher M, Gerber B, Loetscher P, Jones S A, Piali L, Clark-Lewis I, Baggiolini M, Moser B. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med. 1996;184:963–969. doi: 10.1084/jem.184.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ma X Z, Bartczak A, Zhang J, Khattar R, Chen L, Liu M F, Edwards A, Levy G, McGilvray I D. Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome. J Virol. 2010;84:12419–12428. doi: 10.1128/JVI.01219-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Marten N W, Stohlman S A, Bergmann C C. MHV infection of the CNS: mechanisms of immune-mediated control. Viral Immunol. 2001;14:1–18. doi: 10.1089/08828240151061329. [DOI] [PubMed] [Google Scholar]
  40. McCray P B, Jr., Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia H P, Halabi C, Sigmund C D, Meyerholz D K, Kirby P, Look D C, Perlman S. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81:813–821. doi: 10.1128/JVI.02012-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Meduri G U, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 1995;108:1303–1314. doi: 10.1378/chest.108.5.1303. [DOI] [PubMed] [Google Scholar]
  42. Meduri G U, Headley S, Kohler G, Stentz F, Tolley E, Umberger R, Leeper K. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest. 1995;107:1062–1073. doi: 10.1378/chest.107.4.1062. [DOI] [PubMed] [Google Scholar]
  43. Munster V J, de Wit E, Feldmann H. Pneumonia from human coronavirus in a macaque model. N Engl J Med. 2013;368:1560–1562. doi: 10.1056/NEJMc1215691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nicholls J M, Poon L L, Lee K C, Ng W F, Lai S T, Leung C Y, Chu C M, Hui P K, Mak K L, Lim W, Yan K W, Chan K H, Tsang N C, Guan Y, Yuen K Y, Peiris J S. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361:1773–1778. doi: 10.1016/S0140-6736(03)13413-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Osterhaus A D, Fouchier R A, Kuiken T. The aetiology of SARS: Koch’s postulates fulfilled. Philos Trans R Soc Lond B Biol Sci. 2004;359:1081–1082. doi: 10.1098/rstb.2004.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Parra B, Hinton D R, Marten N W, Bergmann C C, Lin M T, Yang C S, Stohlman S A. IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J Immunol. 1999;162:1641–1647. [PubMed] [Google Scholar]
  47. Peiris J S, Lai S T, Poon L L, Guan Y, Yam L Y, Lim W, Nicholls J, Yee W K, Yan W W, Cheung M T, Cheng V C, Chan K H, Tsang D N, Yung R W, Ng T K, Yuen K Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Reghunathan R, Jayapal M, Hsu L Y, Chng H H, Tai D, Leung B P, Melendez A J. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol. 2005;6:2. doi: 10.1186/1471-2172-6-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Roberts A, Deming D, Paddock C D, Cheng A, Yount B, Vogel L, Herman B D, Sheahan T, Heise M, Genrich G L, Zaki S R, Baric R, Subbarao K. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3:e5. doi: 10.1371/journal.ppat.0030005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ruby J, Ramshaw I. The antiviral activity of immune CD8+ T cells is dependent on interferon-gamma. Lymphokine Cytokine Res. 1991;10:353–358. [PubMed] [Google Scholar]
  51. Schaad M C, Stohlman S A, Egbert J, Lum K, Fu K, Wei T, Jr., Baric R S. Genetics of mouse hepatitis virus transcription: identification of cistrons which may function in positive and negative strand RNA synthesis. Virology. 1990;177:634–645. doi: 10.1016/0042-6822(90)90529-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schijns V E, Haagmans B L, Wierda C M, Kruithof B, Heijnen I A, Alber G, Horzinek M C. Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol. 1998;160:3958–3964. [PubMed] [Google Scholar]
  53. Snijder E J, Bredenbeek P J, Dobbe J C, Thiel V, Ziebuhr J, Poon L L, Guan Y, Rozanov M, Spaan W J, Gorbalenya A E. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331:991–1004. doi: 10.1016/S0022-2836(03)00865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wang G, Chen G, Zheng D, Cheng G, Tang H. PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. PLoS One. 2011;6:e17192. doi: 10.1371/journal.pone.0017192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ward S E, Loutfy M R, Blatt L M, Siminovitch K A, Chen J, Hinek A, Wolff B, Pham D H, Deif H, LaMere E A, Kain K C, Farcas G A, Ferguson P, Latchford M, Levy G, Fung L, Dennis J W, Lai E K, Fish E N. Dynamic changes in clinical features and cytokine/chemokine responses in SARS patients treated with interferon alfacon-1 plus corticosteroids. Antivir Ther. 2005;10:263–275. [PubMed] [Google Scholar]
  56. Weiss S R, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coro-navirus. Microbiol Mol Biol Rev. 2005;69:635–664. doi: 10.1128/MMBR.69.4.635-664.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zaki A M, van Boheemen S, Bestebroer T M, Osterhaus A D, Fouchier R A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721. [DOI] [PubMed] [Google Scholar]
  58. Zhao J, Kim K D, Yang X, Auh S, Fu Y X, Tang H. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A. 2008;105:7528–7533. doi: 10.1073/pnas.0800152105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhao J, Li K, Wohlford-Lenane C, Agnihothram S S, Fett C, Gale M J, Jr., Baric R S, Enjuanes L, Gallagher T, McCray P B, Jr., Perlman S. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A. 2014;111:4970–4975. doi: 10.1073/pnas.1323279111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zheng D, Chen G, Guo B, Cheng G, Tang H. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res. 2008;18:1105–1113. doi: 10.1038/cr.2008.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhou J, Chu H, Li C, Wong B H, Cheng Z S, Poon V K, Sun T, Lau C C, Wong K K, Chan J Y, Chan J F, To K K, Chan K H, Zheng B J, Yuen K Y. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of in-flammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis. 2014;209:1331–1342. doi: 10.1093/infdis/jit504. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES