Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2010 Jun 6;25(3):151–157. doi: 10.1007/s12250-010-3093-5

The nucleolus and viral infection

Lei Wang 1, Xiao-ming Ren 2, Jun-ji Xing 1, Alan C Zheng 1,
PMCID: PMC7090757  PMID: 20960288

Abstract

The nucleolus is a subnuclear structure of eukaryocytes. It was thought that nucleolus only participates in the biogenesis and processing of rRNA. However, more and more evidence shows that it has many other functions, such as tRNA precursor processing, stress sensing and it is also involved in gene silencing, senescence and cell cycle regulation. Here, we summarize the recent understandings about the nucleolar functions, the regulation of nucleolar localization of proteins and the role that the nucleolus plays in virus infection, in which some related studies of Herpes simplex virus type 1 (HSV-1) US11, UL24 and bovine herpesvirus-1 infected cell protein 27 (BICP27) carried out in our lab will also be included.

Key words: Nucleolus, Stress, Cell cycle regulation, Virus infection

Footnotes

Foundation items: The Startup Fund of the Hundred Talents Program of the Chinese Academy of Science (2007 1010141); National Natural Science Foundation of China (30870120); Open Research Fund Program of the State Key Laboratory of Virology of China (2007003, 2009007); Hubei Province Natural Science Foundation of Innovation Groups Project (2008CDA013).

These authors contributed equally to this work.

References

  • 1.Andersen J. S., Lam Y. W., Leung A. K., et al. Nucleolar proteome dynamics. Nature. 2005;433:77–83. doi: 10.1038/nature03207. [DOI] [PubMed] [Google Scholar]
  • 2.Andersen J. S., Lyon C. E., Fox A. H., et al. Directed proteomic analysis of the human nucleolus. Curr Biol. 2002;12:1–11. doi: 10.1016/S0960-9822(01)00650-9. [DOI] [PubMed] [Google Scholar]
  • 3.Blair L. S., Steeve B., Donald M. C. Nucleolin Associates With The Human Cytomegalovirus DNA Polymerase Accessory Subunit UL44 And Is Necessary For Efficient Viral Replication. J Virol. 2009;84:1771–1784. doi: 10.1128/JVI.01510-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Calle A., Ugrinova I., Epstein A. L., et al. Nucleolin is required for an efficient herpes simplex virus type 1 infection. J Virol. 2008;82:4762–4773. doi: 10.1128/JVI.00077-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Daelemans D., Costes S. V., Cho E. H., et al. In vivo HIV1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer. J Biol Chem. 2004;279:50167–50175. doi: 10.1074/jbc.M407713200. [DOI] [PubMed] [Google Scholar]
  • 6.Fankhauser C., Izaurralde E., Adachi Y., et al. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol. 1991;11:2567–2575. doi: 10.1128/mcb.11.5.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Frédéric C., Monique E., Nathalie S. U., et al. Unique Motif for Nucleolar Retention and Nuclear Export Regulated by Phosphorylation. Mol Cell Biol. 2002;22(4):1126–1139. doi: 10.1128/MCB.22.4.1126-1139.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Gong L., Yeh E. T. Characterization of a family of nucleolar SUMOspecific proteases with preference for SUMO2 or SUMO3. J Biol Chem. 2006;281:15869–15877. doi: 10.1074/jbc.M511658200. [DOI] [PubMed] [Google Scholar]
  • 9.Hiscox J. A. RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol. 2007;5:119–127. doi: 10.1038/nrmicro1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hindley C. E., Davidson A. D., Matthews D. A. Relationship between adenovirus DNA replication proteins and nucleolar proteins B23.1 and B23.2. J Gen Virol. 2007;88:324–348. doi: 10.1099/vir.0.83196-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Hiscox J. A., Wurm T., Wilson L., et al. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol. 2001;75:506–512. doi: 10.1128/JVI.75.1.506-512.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hong G., Qiong D., Fusen L., et al. Characterization of the Nuclear and Nucleolar Localization Signals of Bovine Herpesvirus-1 Infected Cell Protein 27. Virus Res. 2009;145:312–320. doi: 10.1016/j.virusres.2009.07.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Johnson E. S. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–382. doi: 10.1146/annurev.biochem.73.011303.074118. [DOI] [PubMed] [Google Scholar]
  • 14.Kubota S., Copeland T. D., Pomerantz R. J. Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV1 regulatory proteins. Oncogene. 1999;18:1503–1514. doi: 10.1038/sj.onc.1202429. [DOI] [PubMed] [Google Scholar]
  • 15.Leung A. K., Andersen J. S., Mann M., et al. Bioinformatic analysis of the nucleolus. Biochem J. 2003;376:553–569. doi: 10.1042/BJ20031169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Matthews D. A., Olson M. O. What is new in the nucleolus?: workshop on the nucleolus: new perspectives. EMBO Rep. 2006;7:870–873. doi: 10.1038/sj.embor.7400786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mazzola J. L., Sirover M. A. Alteration of intracellular structure and function of glyceraldehyde3phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology. 2002;23:603–609. doi: 10.1016/S0161-813X(02)00062-1. [DOI] [PubMed] [Google Scholar]
  • 18.Olson M. O., Hingorani K., Szebeni A. Conventional and nonconventional roles of the nucleolus. Int Rev Cytol. 2002;219:199–266. doi: 10.1016/S0074-7696(02)19014-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Olson M. O. Sensing cellular stress: another new function for the nucleolus? Sci STKE. 2004;2004:pe10. doi: 10.1126/stke.2242004pe10. [DOI] [PubMed] [Google Scholar]
  • 20.Olson M. O., Dundr M. The moving parts of the nucleolus. Histochem Cell Biol. 2005;123:203–216. doi: 10.1007/s00418-005-0754-9. [DOI] [PubMed] [Google Scholar]
  • 21.Pendle A. F., Clark G. P., Boon R., et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell. 2005;16:260–269. doi: 10.1091/mbc.E04-09-0791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Rubbi C. P., Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003;22:6068–6077. doi: 10.1093/emboj/cdg579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Sagou K., Uema M., Kawaguchi Y. Nucleolin Is Required for Efficient Nuclear Egress of Herpes Simplex Virus 1 Nucleocapsids. J Virol. 2009;84:2110–2121. doi: 10.1128/JVI.02007-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Staub E., Fiziev P., Rosenthal A., et al. Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. Bioessays. 2004;26:567–581. doi: 10.1002/bies.20032. [DOI] [PubMed] [Google Scholar]
  • 25.Tsai R. Y., McKay R. D. A multistep, GTPdriven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol. 2005;168:179–184. doi: 10.1083/jcb.200409053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Visintin R., Amon A. The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol. 2000;12:372–377. doi: 10.1016/S0955-0674(00)00102-2. [DOI] [PubMed] [Google Scholar]
  • 27.Yoo D., Wootton S. K., Li G., et al. Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNAassociated protein fibrillarin. J Virol. 2003;77:12173–12183. doi: 10.1128/JVI.77.22.12173-12183.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Zheng L., Roeder R. G., Luo Y. S phase activation of the histone H2B promoter by OCAS, a coactivator complex that contains GAPDH as a key component. Cell. 2003;114:255–266. doi: 10.1016/S0092-8674(03)00552-X. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES