Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2015 Jan 4;53(1):77–83. doi: 10.1007/s12275-015-4661-z

Extended stability of cyclin D1 contributes to limited cell cycle arrest at G1-phase in BHK-21 cells with Japanese encephalitis virus persistent infection

Ji Young Kim 1, Soo Young Park 1, Hey Rhyoung Lyoo 1, Eung Seo Koo 1, Man Su Kim 1, Yong Seok Jeong 1,
PMCID: PMC7090764  PMID: 25557483

Abstract

There is increasing evidence that many RNA viruses manipulate cell cycle control to achieve favorable cellular environments for their efficient replication during infection. Although virus-induced G0/G1 arrest often delays early apoptosis temporarily, a prolonged replication of the infected virus leads host cells to eventual death. In contrast, most mammalian cells with RNA virus persistent infection often escape cytolysis in the presence of productive viral replication. In this study, we demonstrated that the extended endurance of cyclin D1 was clearly associated with the suppression of glycogen synthase kinase-3ß (GSK-3ß) expression in BHK-21 cells that are persistently infected with Japanese encephalitis virus (JEV). The G0/G1 arrest of these cells turned much loose compared to the normal BHK-21 cells with JEV acute infection. After cycloheximide treatment, cyclin D1 in the persistently infected cells lasted several hours longer than those in acutely infected cells. Furthermore, both p21Cip1 and p27Kip1, positive regulators for cyclin D1 accumulation in the nucleus, were suppressed in their expression, which contrasts with those in JEV acute infection. Inhibition of the GSK-3ß by lithium chloride treatment rescued a significant number of cells from cytolysis in JEV acute infection, which coincided with the levels of cyclin D1 that escaped from proteolysis. Therefore, the limitation of G1/S arrest in the BHK-21 cells with JEV persistent infection is associated with the suppression of GSK-3ß expression, resulting in the extended duration of cyclin D1.

Keywords: Japanese encephalitis virus, persistent infection, cell cycle, cyclin D1, GSK-3ß

References

  1. Alt J.R., Gladden A.B., Diehl J.A. p21 (Cip1) promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J. Biol. Chem. 2002;277:8517–8523. doi: 10.1074/jbc.M108867200. [DOI] [PubMed] [Google Scholar]
  2. Casanovas O., Miro F., Estanyol J.M., Itarte E., Agell N., Bachs O. Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J. Biol. Chem. 2000;275:35091–35097. doi: 10.1074/jbc.M006324200. [DOI] [PubMed] [Google Scholar]
  3. Das S., Basu A. Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. J. Neurochem. 2008;106:1624–1636. doi: 10.1111/j.1471-4159.2008.05511.x. [DOI] [PubMed] [Google Scholar]
  4. DeCaprio J.A., Ludlow J.W., Figge J., Shew J.Y., Huang C.M., Lee W.H., Marsilio E., Paucha E., Livingston D.M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–283. doi: 10.1016/0092-8674(88)90559-4. [DOI] [PubMed] [Google Scholar]
  5. Desai A.S., Chandramuki A., Gourie-Devi M., Ravi V. Detection of Japanese encephalitis virus antigens in the CSF using monoclonal antibodies. Clin. Diagn. Virol. 1994;2:191–199. doi: 10.1016/0928-0197(94)90022-1. [DOI] [PubMed] [Google Scholar]
  6. Diehl J.A., Cheng M., Roussel M.F., Sherr C.J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12:3499–3511. doi: 10.1101/gad.12.22.3499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dove B., Brooks G., Bicknell K., Wurm T., Hiscox J.A. Cell cycle perturbations induced by infection with the corona virus infectious bronchitis virus and their effect on virus replication. J. Virol. 2006;80:4147–4156. doi: 10.1128/JVI.80.8.4147-4156.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eckner R., Ewen M.E., Newsome D., Gerdes M., DeCaprio J.A., Lawrence J.B., Livingston D.M. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8:869–884. doi: 10.1101/gad.8.8.869. [DOI] [PubMed] [Google Scholar]
  9. Fanning E., Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 1992;61:55–85. doi: 10.1146/annurev.bi.61.070192.000415. [DOI] [PubMed] [Google Scholar]
  10. Feuer R., Mena I., Pagarigan R., Slifka M.K., Whitton J.L. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J. Virol. 2002;76:4430–4440. doi: 10.1128/JVI.76.9.4430-4440.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flemington E.K. Herpesvirus lytic replication and the cell cycle: arresting new developments. J. Virol. 2001;75:4475–4481. doi: 10.1128/JVI.75.10.4475-4481.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geng Y., Yu Q., Sicinska E., Das M., Schneider J.E., Bhattacharya S., Rideout W.M., Bronson R.T., Gardner H., Sicinski P. Cyclin E ablation in the mouse. Cell. 2003;114:431–443. doi: 10.1016/S0092-8674(03)00645-7. [DOI] [PubMed] [Google Scholar]
  13. Gozlan J., Lathey J.L., Spector S.A. Human immunodeficiency virus type 1 induction mediated by genistein is linked to cell cycle arrest in G2. J. Virol. 1998;72:8174–8180. doi: 10.1128/jvi.72.10.8174-8180.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. He Y., Xu K., Keiner B., Zhou J., Czudai V., Li T., Chen Z., Liu J., Klenk H.D., Shu Y.L., et al. Influenza A virus replcation induces cell cycle arrest in G0/G1 phase. J. Virol. 2010;84:12832–12840. doi: 10.1128/JVI.01216-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Howe J.A., Mymryk J.S., Egan C., Branton P.E., Bayley S.T. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc. Natl. Acad. Sci. USA. 1990;87:5883–5887. doi: 10.1073/pnas.87.15.5883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kannan R.P., Hensley L.L., Evers L.E., Lemon S.M., McGivern D.R. Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis. J. Virol. 2011;85:7989–8001. doi: 10.1128/JVI.00280-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim K.M., Lee S.G., Kim J.M., Kim D.S., Song J.Y., Kang H.L., Lee W.K., Cho M.J., Rhee K.H., Youn H.S., et al. Helicobacter pylori γ-glutamyltranspeptidase induces cell cycle arrest at the G1-S phase transition. J. Microbiol. 2010;48:372–377. doi: 10.1007/s12275-010-9293-8. [DOI] [PubMed] [Google Scholar]
  18. Lim S., Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–3093. doi: 10.1242/dev.091744. [DOI] [PubMed] [Google Scholar]
  19. Lin G.Y., Lamb R.A. The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. J. Virol. 2000;74:9152–9166. doi: 10.1128/JVI.74.19.9152-9166.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lowe M., Nakamura N., Warren G. Golgi division and membrane traffic. Trends Cell. Biol. 1998;8:40–44. doi: 10.1016/S0962-8924(97)01189-6. [DOI] [PubMed] [Google Scholar]
  21. Luo H., Zhang J., Dastvan F., Yanagawa B., Reidy M.A., Zhang H.M., Yang D., Wilson J.E., McManus B.M. Ubiquitin-dependent proteolysis of cyclin D1 is associated with Coxsackievirus-induced cell growth arrest. J. Virol. 2003;77:1–9. doi: 10.1128/JVI.77.1.1-9.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mathur A., Arora K.L., Rawat S., Chaturvedi U.C. Persistence, latency and reactivation of Japanese encephalitis virus infection in mice. J. Gen. Virol. 1986;67:381–385. doi: 10.1099/0022-1317-67-2-381. [DOI] [PubMed] [Google Scholar]
  23. Nakayama K., Nakayama K. Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. BioEssays. 1998;20:1020–1029. doi: 10.1002/(SICI)1521-1878(199812)20:12<1020::AID-BIES8>3.3.CO;2-4. [DOI] [PubMed] [Google Scholar]
  24. Nascimento R., Costa H., Parkhouse R.M. Virus manipulation of cell cycle. Protoplasma. 2012;249:519–528. doi: 10.1007/s00709-011-0327-9. [DOI] [PubMed] [Google Scholar]
  25. Obaya A.J., Sedivy J.M. Regulation of cyclin-Cdk activity in mammalian cells. Cell. Mol. Life Sci. 2002;59:126–142. doi: 10.1007/s00018-002-8410-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Park S.Y., Choi E., Jeong Y.S. Integrative effect of defective interfering RNA accumulation and helper virus attenuation is responsible for the persistent infection of Japanese encephalitis virus in BHK-21 cells. J. Med. Virol. 2013;85:1990–2000. doi: 10.1002/jmv.23665. [DOI] [PubMed] [Google Scholar]
  27. Ravi V., Desai A.S., Shenoy P.K., Satishchandra P., Chandramuki A., Gourie-Devi M. Persistence of Japanese encephalitis virus in the human nervous system. J. Med. Virol. 1993;40:326–329. doi: 10.1002/jmv.1890400412. [DOI] [PubMed] [Google Scholar]
  28. Rice D.P., Hodgson T.A., Kopstein A.N. The economic costs of illness: a replication and update. Health Care Financ. Rev. 1985;7:61–80. [PMC free article] [PubMed] [Google Scholar]
  29. Satyanarayana A., Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28:2925–2939. doi: 10.1038/onc.2009.170. [DOI] [PubMed] [Google Scholar]
  30. Schmaljohn C.S., Blair C.D. Persistent infection of cultured mammalian cells by Japanese encephalitis virus. J. Virol. 1977;24:580–589. doi: 10.1128/jvi.24.2.580-589.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schmaljohn C.S., Blair C.D. Clonal analysis of mammalian cell cultures persistently infected with Japanese encephalitis virus. J. Virol. 1979;31:816–822. doi: 10.1128/jvi.31.3.816-822.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sherr C.J. G1 phase progression: cycling on cue. Cell. 1994;79:551–555. doi: 10.1016/0092-8674(94)90540-1. [DOI] [PubMed] [Google Scholar]
  33. Sohn H., Kim K., Lee K.S., Choi H.G., Lee K.I., Shin A.R., Kim J.S., Shin S., Song C.H., Park J.K., et al. Lithium inhibits growth of intracellular Mycobacterium kansasii through enhancement of macrophage apoptosis. J. Microbiol. 2014;52:299–306. doi: 10.1007/s12275-014-3469-6. [DOI] [PubMed] [Google Scholar]
  34. Song B.H., Yun G.N., Kim J.K., Yun S.I., Lee Y.M. Biological and genetic properties of SA14-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. J. Microbiol. 2012;50:698–706. doi: 10.1007/s12275-012-2336-6. [DOI] [PubMed] [Google Scholar]
  35. Stewart S.A., Poon B., Jowett J.B.M., Xie Y., Chen I.S.Y. Lentiviral delivery of HIV-1 Vpr protein induces apoptosis in transformed cells. Proc. Natl. Acad. Sci. USA. 1999;96:12039–12043. doi: 10.1073/pnas.96.21.12039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Su H.L., Liao C.L., Lin Y.L. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J. Virol. 2002;76:4162–4171. doi: 10.1128/JVI.76.9.4162-4171.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Umenai T., Krzysko R., Bektimirov T.A., Assaad F.A. Japanese encephalitis: current worldwide status. Bull. World Health Organ. 1985;63:625–631. [PMC free article] [PubMed] [Google Scholar]
  38. Vaughn D.W., Hoke C.H., Jr The epidemiology of Japanese encephalitis: prospects for prevention. Epidem. Rev. 1992;14:197–221. doi: 10.1093/oxfordjournals.epirev.a036087. [DOI] [PubMed] [Google Scholar]
  39. Werness B.A., Levine A.J., Howley P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–79. doi: 10.1126/science.2157286. [DOI] [PubMed] [Google Scholar]
  40. Yoon S.W., Lee S.Y., Won S.Y., Park S.H., Park S.Y., Jeong Y.S. Characterization of homologous defective interfering RNA during persistent infection of Vero cells with Japanese encephalitis virus. Mol. Cell. 2006;21:112–120. [PubMed] [Google Scholar]
  41. Yuan H., Xu K., Keiner B., Zhou J., Czudai V., Li T., Chen Z., Liu J., Klenk H.D., Shu Y.L., Sun B. Influenza A virus replication induces cell cycle arrest in G0/G1 phase. J. Virol. 2010;24:12832–12840. doi: 10.1128/JVI.01216-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yuan X., Yao Z., Wu J., Zhou Y., Shan Y., Dong B., Zhao Z., Hua P., Chen J., Cong Y. G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway. Am. J. Respir. Cell. Mol. Biol. 2007;37:9–19. doi: 10.1165/rcmb.2005-0345RC. [DOI] [PubMed] [Google Scholar]
  43. Zhirnov O., Klenk H.D. Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis. 2007;12:1419–1432. doi: 10.1007/s10495-007-0071-y. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES