Abstract
In this study we examine the possibility that TiO2 nanoparticles and their conjugates can penetrate into cultivated cells without any special transfection procedures. Oligonucleotides and their derivates were conjugated with the TiO2 nanoparticles, which were obtained as colloidal solutions at a concentration of TiO2 0.3M by TiCl4 hydrolysis. The electronic microscopy of various cell cultures (KCT, Vero, and MDCK) treated with nanoparticle solutions (20 µg/µl) showed that nanoparticles could enter the cells and accumulate in the vacuoles and phagosomes and form inclusions in cytoplasm. Thus, we demonstrated the penetration of TiO2 nanoparticles and their oligonucleotide conjugates into intracellular space without any auxiliary operations. Most other researches used electroporation techniques for similar purposes [1, 2, 5].
Keywords: Actin Filament, TiO2 Nanoparticles, Herceptin, Titanium Dioxide NANOPARTICLES, MDBK Cell
Footnotes
Original Russian Text © V.F. Zarytova, V.V.Zinov’ev, Z.R. Ismagilov, A.S. Levina, M.N. Repkova, N.V. Shikina, A.A. Evdokimov, E.F. Belanov, S.M. Balakhnin, O.A. Serova, S.I. Baiborodin, E.G. Malygin, S.N. Zagrebel’nyi, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 9–10.
References
- 1.Paunesku T., Vogt S., Lai B., Maser J., Stojičevič N., Thurn K. T., Osipo C., Liu H., Legnini D., Wang Z., Lee Ch., Woloschak G. E. Intracellular Distribution of TiO2-DNA Oligonucleotide Nanoconjugates Directed to Nucleolus and Mitochondria Indicates Sequence Specificity. Nano Lett. 2007;7(3):596–601. doi: 10.1021/nl0624723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Endres R. J., Raunesku T., Vogt S., Meade T. J., Woloschak G. E. DNA-TiO2 Nanoconjugates Labeled with Magnetic Resonance Contrast Agents. J. Am. Chem. Soc. 2007;129:15 760–15 761. doi: 10.1021/ja0772389. [DOI] [PubMed] [Google Scholar]
- 3.Gavrilov V. Yu., Zenkovets G. A. Influence of Conditions Providing Precipitation of Titanium Dioxide Hydrogel on the Porous Xerogel Structure. Kinet. Katal. 1990;31(1):168–173. [Google Scholar]
- 4.Levina A., Pyshnaya I., Repkova M., Rar V., Zarytova V. Oligonucleotide Probes Containing Polylysine Residues for Fabrication of DNA Chips on Various Solid Surfaces. Biotechnol. J. 2007;7:879–885. doi: 10.1002/biot.200700027. [DOI] [PubMed] [Google Scholar]
- 5.Paunesku T., Rajh T., Wiederrecht G., Maser J., Vogt S., Stojičevič N., Protič M., Lai B., Oryhon J., Thurnauer M., Woloschak G. Biology of TiO2-Oligonucleotide Nanocomposites. Nat. Mater. 2003;2:343–346. doi: 10.1038/nmat875. [DOI] [PubMed] [Google Scholar]
- 6.Rajh T., Chen L. X., Lukas K., Liu T., Thurnauer M. C., Tiede D. M. Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk. J. Phys. Chem. B. 2002;106:10 543–10 552. doi: 10.1021/jp021235v. [DOI] [Google Scholar]
- 7.Plenat F., Klein-Monhoven N., Marie B., Vignaud J. M., Duprez A. Cell and Tissue Distribution of Synthetic Oligonucleotides in Healthy and Tumor-Bearing Nude Mice: An Autoradiographic, Immunohistological, and Direct Fluorescence Microscopy Study. Am. J. Pathol. 1995;147(1):124–135. [PMC free article] [PubMed] [Google Scholar]
- 8.Jiang W., Kim B. Y. S., Rutka J. T., Chan W. C. W. Nanoparticle-Mediated Cellular Response Is Size-Dependent. Nat. Nanotechnol. 2008;3:145–150. doi: 10.1038/nnano.2008.30. [DOI] [PubMed] [Google Scholar]
- 9.Zhang A.-P., Sun Y.-P. Photocatalytic Killing Effect of TiO2 Nanoparticles on Ls-174-t Human Colon Carcinoma Cells. World J. Gastroenterol. 2004;10(21):3191–3193. doi: 10.3748/wjg.v10.i21.3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Houjin H., Pierstorff E., Osawa E., Ho D. Active Nanodiamond Hydrogels for Chemotherapeutic Delivery. Nano Lett. 2007;7(11):3305–3314. doi: 10.1021/nl071521o. [DOI] [PubMed] [Google Scholar]