Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1999;44(5):467–486. doi: 10.1007/BF02816247

Animal virus receptors

L Jindrák 1,2, L Grubhoffer 1,2,
PMCID: PMC7090770  PMID: 10997129

Abstract

The term ‘receptor’ is generally accepted as the cell-surface component that participates in virus binding and facilitates subsequent viral infection. Recent advances in technology have permitted the identification of several virus receptors, increasing our understanding of the significance of this initial virus-cell and virus-host interaction. Virus binding was previously considered to involve simple recognition and attachment to a single cell surface molecule by virus attachment proteins. The classical concept of these as single entities that participate in a lock-and-key-type process has been superseded by new data indicating that binding can be a multistep process, often involving different virus-attachment proteins and more than one host-cell receptor.

Keywords: Sialic Acid, Japanese Encephalitis Virus, Feline Immunodeficiency Virus, Bovine Leukemia Virus, African Swine Fever Virus

Abbreviations

AchR

acetylcholine receptor

ASFV

African swine fever virus

Bgp

biliary glycoprotein

BHK

baby hamster kidney

DVDV

bovine viral diarrhea virus

CAR

coxsackie and adenovirus receptor

CCR, CXCR

chemokine receptors

CD

cluster of differentiation

CDR

complementarity-determining region

CEA

carcinoembryonic antigen

CHO

chinese hamster ovary

EMC

encephalomyocarditis

DAF

decay accelerating factor

F

fusion protein

FMDV

foot-and-mouth disease virus

GaLV

gibbon ape leukemia virus

GD1

ganglioside D1

GNA

Galanthus nivalis agglutinin

HA

hemagglutinin

HAV

hepatitis A virus

HBV

hepatitis B virus

HCV

hepatitis C virus

HHV

human herpesvirus

HIV

human immunodeficiency virus

HLA

human leukocyte antigen

HN

hemagglutinin-neuraminidase

HSV

herpes simplex virus

HPTLC

high performance thin-layer chromatography

ICAM

intercellular cell-adhesion molecule

JEV

Japanese encephalitis virus

LDLR

low-density lipoprotein receptor

LESTR

leukocyte derived seven-transmembrane domain receptor

LFA

leukocyte functional antigen

MCAT

murine cationic amino acid transporter

MHC

major histocompatibility complex

MHV

mouse hepatitis virus

MuLV

murine leukemia

NA

neuraminidase

PHA

phytohemagglutinin

PRCV

porcine respiratory coronavirus

PVDF

polyvinylidenedifluoride

RCA

regulator of complement activation

RGD

arginylglycylasparagine

SFV

Semliki forest virus

SIN

Sindbis virus

SIV

simian immunodeficiency virus

TBE

tick-borne encephalitis

TGEV

transmissible gastroenteritis virus

VCAM

vascular cell-adhesion molecule

VEE

Venezuelan equine encephalitis

VLA

very late antigen

WGA

wheat-germ agglutinin

References

  1. Air G.M., Laver W.G. The neuraminidase of influenza virus. Proteins. 1989;6:341–356. doi: 10.1002/prot.340060402. [DOI] [PubMed] [Google Scholar]
  2. Albritton L.M., Tseng L., Scadden D., Cunningham J.M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell. 1989;57:659–666. doi: 10.1016/0092-8674(89)90134-7. [DOI] [PubMed] [Google Scholar]
  3. Alcamí A., Carrascosa A.L., Vinuela E. Saturable binding sites mediate the entry of African swine fever virus into Vero cells. Virology. 1989;168:393–398. doi: 10.1016/0042-6822(89)90281-X. [DOI] [PubMed] [Google Scholar]
  4. Alcamí A., Carrascosa A.L., Vinuela E. Interaction of African swine fever virus with macrophages. Virus Res. 1990;17:93–104. doi: 10.1016/0168-1702(90)90071-I. [DOI] [PubMed] [Google Scholar]
  5. Allaway G.P., Pardoe U.I., Tavakkol A., Burness A.T.H. Encephalomyocarditis virus attachment. In: Crowell R.L., Lonberg-Holm K., editors. Virus Attachment and Entry into Cells. Washington (DC): American Society for Microbiology; 1986. pp. 116–125. [Google Scholar]
  6. Anderson L.W., Anderson P.K., Liggitt H.D. Susceptibility of blood-derived monocytes and macrophages to caprine arthritis-encephalitis virus. Infect. Immun. 1983;41:837–840. doi: 10.1128/iai.41.2.837-840.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Angulo A., Alcamí A., Vinuela E. Virus-host interactions in African swine fever: the attachment to cellular receptors. Arch. Virol. (Suppl.) 1993;7:169–183. doi: 10.1007/978-3-7091-9300-6_14. [DOI] [PubMed] [Google Scholar]
  8. Ardman B., Khiroya R.H., Schwartz R.S. Recognition of a leukemia-related antigen by an anti-idiotypic antiserum to an anti-gp70 monoclonal antibody. J. Exp. Med. 1985;161:669–686. doi: 10.1084/jem.161.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Arthur L.O., Bess J.W.J., Sowder R.C., Benveniste R.E., Mann D.L., Chermann J.C., Henderson L.E. Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science. 1992;258:1935–1938. doi: 10.1126/science.1470916. [DOI] [PubMed] [Google Scholar]
  10. Bahraoui E., Benjouard A., Guetard D., Kolbe H., Gluckman J.-C., Montagnier L. Study of the interaction of HIV-1 and HIV-2 envelope glycoproteins with the CD4 receptors and role of N-glycans. AIDS Res. Hum. Retrovir. 1992;8:565–573. doi: 10.1089/aid.1992.8.565. [DOI] [PubMed] [Google Scholar]
  11. Baker A.T., Varghese J.N., Laver W.G., Air G.M., Colman P.M. Three-dimensional structure of neuraminidase of subtype N9 from an avian virus. Proteins. 1987;2:111–117. doi: 10.1002/prot.340020205. [DOI] [PubMed] [Google Scholar]
  12. Balzarini J., Schls D., Neyts J., Van Damme E., Peumans W., De Clerq E. Alpha-1,3- and alpha-1,6-d-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infectionin vitro. Antimicrob. Agents Chemother. 1991;35:410–416. doi: 10.1128/aac.35.3.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ban J., Portetelle D., Altaner C., Horion B., Milan D., Krchnak V., Burny A., Kettmann R. Isolation and characterization of a 2.3-kilobase-pair cDNA fragment encoding the binding domain of the bovine leukemia virus cell receptor. J. Virol. 1993;67:1050–1057. doi: 10.1128/jvi.67.2.1050-1057.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bass D.M., Mackow E.R., Greenberg H.B. Identification and partial characterization of a rhesus rotavirus binding glycoprotein on murine enterocytes. Virology. 1991;183:602–610. doi: 10.1016/0042-6822(91)90989-O. [DOI] [PubMed] [Google Scholar]
  15. Bates P., Young J.A.T., Varmus H.E. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74:1043–1051. doi: 10.1016/0092-8674(93)90726-7. [DOI] [PubMed] [Google Scholar]
  16. Becker S., Spiess M., Klenk H.-D. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J. Gen. Virol. 1995;76:393–399. doi: 10.1099/0022-1317-76-2-393. [DOI] [PubMed] [Google Scholar]
  17. Benkirane M., Corbeau P., Housset V., Devaux C. An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits provirus transcription in HIV-infected T cells. EMBO J. 1993;12:4909–4921. doi: 10.1002/j.1460-2075.1993.tb06185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bergelson J.M., Krithivas A., Celi L., Droguett G., Horwitz M.S., Wickham T., Crowell R.L., Finberg R.W. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 1998;72:415–419. doi: 10.1128/jvi.72.1.415-419.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bergelson J.M., Shepley M.P., Chan M.C., Hemler M.E., Finberg R.W. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992;255:1718–1720. doi: 10.1126/science.1553561. [DOI] [PubMed] [Google Scholar]
  20. Bergelson J.M., St. John N., Kawaguchi S., Chan M.C., Stubdal H., Modlin J., Finberg R.W. Infection by echoviruses 1 and 8 depends on the α2 subunit of human VLA-2. J. Virol. 1993;67:6847–6852. doi: 10.1128/jvi.67.11.6847-6852.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bergelson J.M., Chan M., Solomon K.R., St. John N.F., Lin J.H., Finberg R.W. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Nat. Acad. Sci. USA. 1994;91:6245–6248. doi: 10.1073/pnas.91.13.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Berinstein A., Roivainen M., Hovi T., Mason P.W., Baxt B. Antibodies to the vitronectin receptor (integrin αVβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 1995;69:2664–2666. doi: 10.1128/jvi.69.4.2664-2666.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bhat S., Spitalnik S.L., Gonzalez-Scarano F., Silberberg D.H. Galactosylceramide or a derivative is an essential component of the neural receptor for HIV-1 envelope glycoprotein gp120. Proc. Nat. Acad. Sci. USA. 1991;88:7131–7134. doi: 10.1073/pnas.88.16.7131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bork P., Holm L., Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 1994;242:309–320. doi: 10.1006/jmbi.1994.1582. [DOI] [PubMed] [Google Scholar]
  25. Braun J.M.A., Gras G., Chapuis F., Sommerfelt M.A., Clapham P.R., Weiss R.A., Asjo B., Gluckman J.-C., Dormont D., Barre-Sinoussi F. In: Leucocyte Typing V: White Cell Differentiation Antigens. Schlossman S.F., editor. Oxford-New York: Oxford University Press; 1995. pp. 465–468. [Google Scholar]
  26. Breau W.C., Atwood W.J., Norkin L.C. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor. J. Virol. 1992;66:2037–2045. doi: 10.1128/jvi.66.4.2037-2045.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Broder C.C., Collman R.G. Chemokine receptors and HIV. J. Leukocyt. Biol. 1997;62:20–29. doi: 10.1002/jlb.62.1.20. [DOI] [PubMed] [Google Scholar]
  28. Brossmer R., Isecke R., Herrler G. A sialic acid analogue acting as a receptor determinant for binding but not for infection by influenza C virus. FEBS Lett. 1993;323:96–98. doi: 10.1016/0014-5793(93)81456-A. [DOI] [PubMed] [Google Scholar]
  29. Broughan J.H., Wunner W.H. Characterization of protein involvement in rabies virus binding to BHK-21 cells. Arch. Virol. 1995;140:75–93. doi: 10.1007/BF01309725. [DOI] [PubMed] [Google Scholar]
  30. Brown K.E., Anderson S.M., Young N.S. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993;262:114–117. doi: 10.1126/science.8211117. [DOI] [PubMed] [Google Scholar]
  31. Buckland R., Wild T.F. Is CD46 the cellular receptor for measles virus? Virus Res. 1997;48:1–9. doi: 10.1016/S0168-1702(96)01421-9. [DOI] [PubMed] [Google Scholar]
  32. Bullough P.A., Hugson F.M., Skehel J.J., Wiley D.C. Structure of influenza hemagglutinin at the pH of membrane fusion. Nature. 1994;371:37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  33. Burmeister W.P., Ruigrok R.W.H., Cusack S. The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992;11:49–56. doi: 10.1002/j.1460-2075.1992.tb05026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chattopadhyay S.K., Lander M.R., Gupta S., Rands E., Lowy D.R. Origin of mink cytopathic focus-forming (MCF) viruses: comparison with ecotropic and xenotropic murine leukemia virus genomes. Virology. 1981;113:465–483. doi: 10.1016/0042-6822(81)90175-6. [DOI] [PubMed] [Google Scholar]
  35. Crane S.E., Buzy J., Clements J.E. Identification of cell membrane proteins that bind visna virus. J. Virol. 1991;65:6137–6143. doi: 10.1128/jvi.65.11.6137-6143.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Crowell R.L., Tomko R.P. Receptors for picornaviruses. In: Wimmer E., editor. Cellular Receptors for Animal Viruses. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1994. pp. 75–79. [Google Scholar]
  37. Dalgleish A.G., Beverley P.C., Clapham P.R., Crawford D.H., Greaves M.F., Weiss A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature (London) 1984;312:763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  38. Dallocchio F., Tomasi M., Bellini T. Activation of the Sendai virus fusion protein by receptor binding. Biochem. Biophys. Res. Commun. 1995;208:36–41. doi: 10.1006/bbrc.1995.1301. [DOI] [PubMed] [Google Scholar]
  39. Dalziel K.G., Hopkins J., Watt N.J., Dutia B.M., Clarke M.A.K., McConnell I. Identification of a putative cellular receptor for the lentivirus visna virus. J. Gen. Virol. 1991;72:1905–1911. doi: 10.1099/0022-1317-72-8-1905. [DOI] [PubMed] [Google Scholar]
  40. Delmas B., Gelfi J., L'Haridon R., Vogel L.K., Sjostrom H., Noren O., Laude H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature (London) 1992;357:417–422. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Delmas G., Gelfi H., Sjostrom H., Noren O., Laude H. Further characterization of aminopeptidase N as a receptor for coronaviruses. Adv. Exp. Med. Biol. 1993;342:293–298. doi: 10.1007/978-1-4615-2996-5_45. [DOI] [PubMed] [Google Scholar]
  42. De Meyer S., Gong Z.J., Suwandhi W., van Pelt J., Soumillion A., Yap S.H. Organ and species specificity of hepatitis B virus (HBV) infection: a review of literature with a special reference to preferential attachment of HBV to human hepatocytes. J. Virol. Hepat. 1997;4:145–153. doi: 10.1046/j.1365-2893.1997.00126.x. [DOI] [PubMed] [Google Scholar]
  43. Doring R.E., Marcil A., Chopra A., Richardson C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain) Cell. 1993;75:295–305. doi: 10.1016/0092-8674(93)80071-L. [DOI] [PubMed] [Google Scholar]
  44. Dunster L.M., Schneider-Schaulies J., Loffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology. 1994;198:265–274. doi: 10.1006/viro.1994.1029. [DOI] [PubMed] [Google Scholar]
  45. Durrer P., Gaudin Y., Ruigrok R.W.H., Graf R., Brunner J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 1995;270:17575–17581. doi: 10.1074/jbc.270.29.17575. [DOI] [PubMed] [Google Scholar]
  46. Dveksler G.S., Dieffenbach C.W., Cardellichio C.B., McCuaig K., Pensiero M.N., Jiang G.-S., Beauchemin N., Holmes K.V. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 1993;67:1–8. doi: 10.1128/jvi.67.1.1-8.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Dveksler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G.-S., Holmes K.V., Dieffenbach C.W. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 1991;65:6881–6891. doi: 10.1128/jvi.65.12.6881-6891.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Dveksler G.S., Pensiero M.N., Dieffenbach C.W., Cardellichio C.B., Basile A.A., Elias P.E., Holmes K.V. Mouse coronavirus MHV-A59 and blocking anti-receptor monoclonal antibody bind to the N-terminal domain of cellular receptor MHVR. Proc. Nat. Acad. Sci. USA. 1993;90:1716–1720. doi: 10.1073/pnas.90.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Eglitis M.A., Eiden M.V., Wilson C.A. Gibbon ape leukemia virus and the amphotropic murine leukemia virus 4070A exhibit an unusual interference pattern on E36 Chinese hamster cells. J. Virol. 1993;67:5472–5477. doi: 10.1128/jvi.67.9.5472-5477.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Epand R.M., Nir S., Parolini M., Flanagan T.D. The role of the ganglioside GD1a as a receptor for Sendai virus. Biochemistry. 1995;34:1084–1089. doi: 10.1021/bi00003a045. [DOI] [PubMed] [Google Scholar]
  51. Evander M., Frazer I.H., Payne E., Qi Y.M., Hengst K., McMillan N.A.J. Identification of the α6 integrin as a candidate receptor for papillomaviruses. J. Virol. 1997;71:2449–2456. doi: 10.1128/jvi.71.3.2449-2456.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Fantini J., Cook D.G., Nathanson N., Spitalnik S.L., Gonzalez-Scarano F. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential pg120 receptor. Proc. Nat. Acad. Sci. USA. 1993;90:2700–2704. doi: 10.1073/pnas.90.7.2700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Feng Y., Broder C.C., Kennedy P.E., Berger E.A. HIV-1 entry co-factor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
  54. Fenouillet E., Gluckman J.-C., Jones I.M.: Biological roles of HIV-1 glycoprotein glycans. Paper presented atGlyco XII: 12th Internat. Symp. on Glycoconjugates, Kraków (Poland) 1993.
  55. Fenouillet E., Gluckman J.-C., Jones I.M. Functions of HIV envelope glycans. TIBS. 1994;19:65–71. doi: 10.1016/0968-0004(94)90034-5. [DOI] [PubMed] [Google Scholar]
  56. Fischinger P.J., Nomura S., Bolognesi D.P. A novel murine oncornavirus with dual eco- and xenotropic properties. Proc. Nat. Acad. Sci. USA. 1975;72:5150–5155. doi: 10.1073/pnas.72.12.5150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fukudome K., Yoshie O., Konno T. Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology. 1989;172:196–205. doi: 10.1016/0042-6822(89)90121-9. [DOI] [PubMed] [Google Scholar]
  58. Furuta Y., Eriksson K., Svennerholm B., Fredman P., Horal P., Jeansson S., Vahlne A., Holmgren J., Czerkinsky C. Infection of vaginal and colonic epithelial cells by the human immunodeficiency virus type 1 is neutralized by antibodies raised against conserved epitopes on the envelope glycoprotein gp120. Proc. Nat. Acad. Sci. USA. 1994;91:12559–12563. doi: 10.1073/pnas.91.26.12559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Gastka M., Morvath J., Lentz T. Rabies virus binding to the nicotinic acetylcholine receptor α subunit demonstrated by virus overlay protein binding assay. J. Gen. Virol. 1996;77:2437–2440. doi: 10.1099/0022-1317-77-10-2437. [DOI] [PubMed] [Google Scholar]
  60. Gattegno L., Ramdani A., Jouault T., Saffar L., Gluckman J.-C. Lectin-carbohydrate interactions and infectivity of human immunodeficiency virus type 1 (HIV-1) AIDS Res. Hum. Retrovir. 1992;8:27–37. doi: 10.1089/aid.1992.8.27. [DOI] [PubMed] [Google Scholar]
  61. Geyer H., Holschbach C., Hunsmann G., Schneider J. Carbohydrates of human immunodeficiency virus. J. Biol. Chem. 1988;263:11760–11767. [PubMed] [Google Scholar]
  62. Gomez-Puertas P., Rodríguez F., Oviedo J.M., Ramiro-Ibánez F., Ruiz-Gonzalvo F., Covadonga A., Escribano J.M. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J. Virol. 1996;70:5689–5694. doi: 10.1128/jvi.70.8.5689-5694.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Gonda M.A., Luther D.G., Fong S.E., Tobin G.J. Bovine immunodeficiency virus: molecular biology and virus-host interactions. Virus Res. 1994;32:155–181. doi: 10.1016/0168-1702(94)90040-X. [DOI] [PubMed] [Google Scholar]
  64. Gonzales-Scarano F., Pobjecky N., Nathanson N. La Crosse bunyavirus can mediate pH-dependent fusion from without. Virology. 1984;132:222–225. doi: 10.1016/0042-6822(84)90107-7. [DOI] [PubMed] [Google Scholar]
  65. Gratama J.W., Ernberg I. Molecular epidemiology of Epstein-Barr virus infection. Adv. Cancer Res. 1995;67:197–255. [PubMed] [Google Scholar]
  66. Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  67. Grewal K.K., Hamid J., Pardoe I.U., Burness A.T.H.: Transfection of bovine cells with glycophorin A cDNA induces susceptibility to encephalomyocarditis virus infection. Abstr. A-11, 7th Eur. Study Group Mol. Biol. Picornaviruses, 1991.
  68. Gyu Y., King D.S., Shin Y.K. Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. Science. 1994;266:274–276. doi: 10.1126/science.7939662. [DOI] [PubMed] [Google Scholar]
  69. Hammar L., Hirsch I., Machado A.A., De Mareuil J., Baillon J.G., Bolmont C., Chermann J.-C. Lectin-mediated effects on HIV type 1 infectionin vitro. AIDS Res. Hum. Retrovir. 1995;11:87–95. doi: 10.1089/aid.1995.11.87. [DOI] [PubMed] [Google Scholar]
  70. Harouse J.M., Kunsch C., Hartle H.T., Laughlin M.A., Hoxie J.A., Wigdahl B., Gonzalez-Scarano F. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J. Virol. 1989;63:2527–2533. doi: 10.1128/jvi.63.6.2527-2533.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Harrowe G., Mitsuhashi M., Payan D.G. Measles virus-substance P receptor interactions. J. Clin. Invest. 1990;85:1324–1327. doi: 10.1172/JCI114571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Harrowe G., Sudduth-Klinger J., Payan D.G. Measles virus-substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication. Cell. Mol. Neurobiol. 1992;12:397–409. doi: 10.1007/BF00711541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Hartley J.W., Wolford N.K., Old L.J., Rowe W.P. A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc. Nat. Acad. Sci. USA. 1977;74:789–792. doi: 10.1073/pnas.74.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Hartshorn K.L., Sastry K., Brown D., White M.R., Okarma T.B., Lee Y.-M., Tauber A.I. Conglutinin acts as an opsonin for influenza A viruses. J. Immunol. 1993;151:6265–6273. [PubMed] [Google Scholar]
  75. Haywood A.M. Virus receptors: binding, adhesion strengthening, and changes in viral structure. J. Virol. 1994;68:1–5. doi: 10.1128/jvi.68.1.1-5.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki forest virus into BHK-21 cells. J. Cell. Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Helenius A., Morein B., Fries E., Simons K., Robinson P., Schirrmacher V., Terhorst C., Strominger J.L. Human (HLA-A and HLA-B) and murine (H-2K and H2D) histocompatibility antigens are cell surface receptors for Semliki forest virus. Proc. Nat. Acad. Sci. USA. 1978;75:3846–3850. doi: 10.1073/pnas.75.8.3846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Herrler G. Transmissible gastroenteritis virus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 1996;70:5634–5637. doi: 10.1128/jvi.70.8.5634-5637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Hertogs K., Leenders W.P., Depla E., De Bruin W.C., Meheus L., Raymackers J., Moshage H., Yap S.H. Endonexin II, present on human liver plasma membranes, is a specific binding protein of small hepatitis B virus (HBV) envelope protein. Virology. 1993;197:549–557. doi: 10.1006/viro.1993.1628. [DOI] [PubMed] [Google Scholar]
  80. Hirsch V.M., Johnson P.R. Pathogenic diversity of simian immunodeficiency viruses. Virus Res. 1994;32:183–203. doi: 10.1016/0168-1702(94)90041-8. [DOI] [PubMed] [Google Scholar]
  81. Hofer F., Gruenberger M., Kowalski H., Machat H., Huettinger M., Kuechler E., Blaas D. Members of the low density lipoprotein receptor family mediate cell entry of a minor group common cold virus. Proc. Nat. Acad. Sci. USA. 1994;91:1839–1842. doi: 10.1073/pnas.91.5.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Holschbach C., Schneider J., Geyer H. Glycosylation of the envelope glycoprotein gp130 of simian immunodeficiency virus from sooty mangabey (Cercocebus atys) Biochem. J. 1990;267:759–766. doi: 10.1042/bj2670759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Horuk R., Hesselgesser J., Zhou Y., Faulds D., Halks-Miller M., Harvey S., Taub D., Samson M., Parmentier M., Rucker J., Doranz B.J., Doms R.W. The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains. J. Biol. Chem. 1998;273:386–391. doi: 10.1074/jbc.273.1.386. [DOI] [PubMed] [Google Scholar]
  84. Hosie M.J., Willett B.J., Dunsford T.H., Jarrett O., Neil J.C. A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. J. Virol. 1993;67:1667–1671. doi: 10.1128/jvi.67.3.1667-1671.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Huang T., Campadelli-Fiume G. Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis. Proc. Nat. Acad. Sci. USA. 1996;93:1836–1840. doi: 10.1073/pnas.93.5.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Huang R.T.C., Lichtenberg B., Rick O. Involvement of annexin V in the entry of influenza viruses and role of phospholipids in infection. FEBS Lett. 1996;392:59–62. doi: 10.1016/0014-5793(96)00783-1. [DOI] [PubMed] [Google Scholar]
  87. Huber S.A. VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J. Virol. 1994;68:3453–3458. doi: 10.1128/jvi.68.6.3453-3458.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Jackson T., Ellard F.M., Ghazaleh R.A., Brookes S.M., Blakemore W.E., Corteyn A.H., Stuart D.I., Newman J.W.I., King A.M.Q. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 1996;70:5282–5287. doi: 10.1128/jvi.70.8.5282-5287.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Ito T., Couceiro J.N.S.S., Kelm S., Baum L.G., Krauss S., Castrucci M.R., Donatelli I., Kida H., Paulson J.C., Webster R.G., Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998;72:7667–7376. doi: 10.1128/jvi.72.9.7367-7373.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Jin Y.-M., Pardoe I.U., Burness A.T., Michalak T.I. Identification and characterization of the cell surface 70-kilodalton sialoglycoprotein(s) as a candidate receptor for encephalomyocarditis virus on human nucleated cells. J. Virol. 1994;68:7308–7319. doi: 10.1128/jvi.68.11.7308-7319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Jones P.L.S.J., Korte T., Blumenthal R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J. Biol. Chem. 1998;273:404–409. doi: 10.1074/jbc.273.1.404. [DOI] [PubMed] [Google Scholar]
  92. Jungeblut C.W., Kodza H. Studies of propagation of Col SK group of viruses in various tissue culture media. Proc. Soc. Exp. Biol. Med. 1957;96:133–139. doi: 10.3181/00379727-96-23413. [DOI] [PubMed] [Google Scholar]
  93. Kaplan G., Totsuka A., Thompson P., Akatsuka A., Moritsugu Y., Feinstone S.M. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 1996;15:4282–4296. [PMC free article] [PubMed] [Google Scholar]
  94. Karlsson K.A., Stromberg N. Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Meth. Enzymol. 1987;138:220–232. doi: 10.1016/0076-6879(87)38019-x. [DOI] [PubMed] [Google Scholar]
  95. Karlsson K.A., Angstrom J., Bergstrom J., Lanne B. Microbial interaction with animal cell surface carbohydrates. Acta Pathol. Microbiol. Immunol. 1992;100:71–83. [PubMed] [Google Scholar]
  96. Kauffman R.S., Noseworthy J.H., Nepom J.T., Finberg R., Fields B.N., Greene M.I. Cell receptors for the mammalian reovirus. II. Monoclonal anti-idiotypic antibody blocks viral binding to cells. J. Immunol. 1983;131:2539–2541. [PubMed] [Google Scholar]
  97. Kavanaugh M.P., Miller D.G., Zhang W., Law W., Kozak S.L., Kebat D., Miller A.D. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Nat. Acad. Sci. USA. 1994;91:7071–7075. doi: 10.1073/pnas.91.15.7071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Keljo D.J., Smith A.K. Characterization of binding of simian rotavirus SA11 to cultured epithelial cells. J. Pediatr. Gastroenterol. Nutr. 1988;7:249–256. doi: 10.1097/00005176-198803000-00015. [DOI] [PubMed] [Google Scholar]
  99. Kim J.W., Closs E.I., Albritton L.M., Cunningham J.M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature (London) 1991;352:725–728. doi: 10.1038/352725a0. [DOI] [PubMed] [Google Scholar]
  100. Kimura T., Kimura-Kuroda J., Nagashima K., Yasui K. Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility. Arch. Virol. 1994;139:239–251. doi: 10.1007/BF01310788. [DOI] [PubMed] [Google Scholar]
  101. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J.-C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature (London) 1984;312:767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
  102. Kopecký J., Grubhoffer L., Kovář V., Jindrák L., Vokurková D. A putative host-cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology. 1999;42:9–16. doi: 10.1159/000024954. [DOI] [PubMed] [Google Scholar]
  103. Lankes W.T., Furthmayer H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc. Nat. Acad. Sci. USA. 1991;88:8297–8301. doi: 10.1073/pnas.88.19.8297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Lankes W.T., Griesmacher A., Grunwald J., Schwartz-Albiez R., Keller R. A heparin-binding protein involved in inhibition of smooth muscle cell proliferation. Biochem. J. 1988;251:831–842. doi: 10.1042/bj2510831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lawlence M.B., Springer T.A. Leukocytes roll on a selection at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991;65:859–873. doi: 10.1016/0092-8674(91)90393-D. [DOI] [PubMed] [Google Scholar]
  106. Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N., Gregory T.J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 1990;265:10373–10382. [PubMed] [Google Scholar]
  107. Li Y., Luo L., Rasool N., Kang C.Y. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J. Virol. 1993;67:584–588. doi: 10.1128/jvi.67.1.584-588.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Liu C., Eichelberger M.C., Compans R.W., Air G.M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J. Virol. 1995;69:1099–1106. doi: 10.1128/jvi.69.2.1099-1106.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Ludwig G.V., Kondig J.P., Smith J.F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J. Virol. 1996;70:5592–5599. doi: 10.1128/jvi.70.8.5592-5599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham R.A., Weiss R.A., Axel R. The T4 gene encodes for the AIDS virus receptor and is expressed in the immune system and in the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  111. Maldov D.G., Karganova G.G., Timofeev A.V. Tick-borne encephalitis virus interaction with the target cells. Arch. Virol. 1992;127:321–325. doi: 10.1007/BF01309594. [DOI] [PubMed] [Google Scholar]
  112. Marriott S.J., Roeder D.J., Consigli R.A. Anti-idiotypic antibodies to a polyomavirus monoclonal antibody recognize cell surface components of mouse kidney cells and prevent polyomavirus infection. J. Virol. 1987;61:2747–2753. doi: 10.1128/jvi.61.9.2747-2753.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Marsh M., Helenius A. Adsorptive endocytosis of Semliki forest virus. J. Mol. Biol. 1980;142:439–454. doi: 10.1016/0022-2836(80)90281-8. [DOI] [PubMed] [Google Scholar]
  114. Marsh M., Bolzau E., Helenius A. Penetration of Semliki forest virus from acidic prelysosomal vacuoles. Cell. 1983;32:931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
  115. Marsh M., Matlin K., Simons K., Reggio H., White J., Kartenbeck J., Helenius A. Are lysosomes a site of enveloped-virus penetration? Cold Spring Harbor Symp. Quant. Biol. 1982;46:835–843. doi: 10.1101/sqb.1982.046.01.078. [DOI] [PubMed] [Google Scholar]
  116. Matlin K.S., Reggio J., Helenius A., Simons K. Entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1981;91:601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Matrosovich M., Miller Podraza H., Teneberg S., Robertson J., Karlsson K.A. Influenza viruses display high-affinity binding to human polyglycosylceramides represented on a solid-phase assay surface. Virology. 1996;223:413–416. doi: 10.1006/viro.1996.0498. [DOI] [PubMed] [Google Scholar]
  118. Mecham R.P. Receptors for laminin on mammalian cells. FASEB J. 1991;5:2538–2546. doi: 10.1096/fasebj.5.11.1651264. [DOI] [PubMed] [Google Scholar]
  119. Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  120. Mendez E., Barias C.F., Lopez S. Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J. Virol. 1993;67:5253–5259. doi: 10.1128/jvi.67.9.5253-5259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. McClintock P.R., Billups L.C., Notkins A.L. Receptors for encephalomyocarditis virus on murine and human cells. Virology. 1980;106:261–272. doi: 10.1016/0042-6822(80)90249-4. [DOI] [PubMed] [Google Scholar]
  122. Miller D.G., Miller A.D. Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor. J. Virol. 1992;66:78–84. doi: 10.1128/jvi.66.1.78-84.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Miller D.G., Miller D. A family of retroviruses that utilize related phosphate transporters for cell entry. J. Virol. 1994;68:8270–8276. doi: 10.1128/jvi.68.12.8270-8276.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Miller D.G., Edwards R.H., Miller A.D. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc. Nat. Acad. Sci. USA. 1994;91:78–82. doi: 10.1073/pnas.91.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Mizuochi T., Spellman M.W., Larkin M., Solomon J., Basa L., Feizi T. Carbohydrate structures of the human immunodeficiency virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem. J. 1988;254:599–603. doi: 10.1042/bj2540599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Mizuochi T., Matthews T.J., Kato M., Hamako J., Titani K., Solomon J., Feizi T. Diversity of oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J. Biol. Chem. 1990;265:8519–8524. [PubMed] [Google Scholar]
  127. Moore J.P., Trkola A., Dragic T. Co-receptors for HIV-1 entry. Curr. Opin. Immunol. 1997;9:551–562. doi: 10.1016/S0952-7915(97)80110-0. [DOI] [PubMed] [Google Scholar]
  128. Myers G., Lenroot R. HIV variation studies; HIV glycosylation: What does it portend? AIDS Res. Hum. Retrovir. 1992;8:1459–1460. doi: 10.1089/aid.1992.8.1459. [DOI] [PubMed] [Google Scholar]
  129. Naito S., Matsumoto S. Identification of cellular actin within the rabies virus. Virology. 1978;91:151–163. doi: 10.1016/0042-6822(78)90363-X. [DOI] [PubMed] [Google Scholar]
  130. Nandi P., Charpilienne A., Cohen J. Interaction of rotavirus particles with liposomes. J. Virol. 1992;66:3363–3367. doi: 10.1128/jvi.66.6.3363-3367.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Naniche D., Varior-Krishnan G., Cervoni F., Wild T.F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 1993;67:6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Naniche D., Wild C., Rabourdin-Combe C., Gerlier D. Measles virus hæmagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J. Gen. Virol. 1993;74:1073–1079. doi: 10.1099/0022-1317-74-6-1073. [DOI] [PubMed] [Google Scholar]
  133. Narayan O., Kennedy-Stoskopf S., Sheffer D., Griffin D.E., Clements J.E. Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages. Infect. Immun. 1983;41:67–73. doi: 10.1128/iai.41.1.67-73.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Nėdellec P., Dveksler G.S., Daniels E., Turbide C., Chow B., Basile A.A., Holmes K.V., Beauchemin N. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J. Virol. 1994;68:4525–4537. doi: 10.1128/jvi.68.7.4525-4537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Neurath A.R., Strick N. The putative cell receptors for hepatitis B virus (HBV), annexin V and apolipoprotein, H, bind to lipid components of HBV. Virology. 1994;204:475–447. doi: 10.1006/viro.1994.1558. [DOI] [PubMed] [Google Scholar]
  136. Nicholson-Weller A., Burge J., Fearon D.T., Weller P.F., Austen K.F. Isolation of a human erythrocyte membrane glyco-protein with decay accelerating activity for C3 convertases of the complement system. J. Immunol. 1982;129:184–189. [PubMed] [Google Scholar]
  137. Nieva J.L., Bron R., Corver J., Wilschut J. Membrane fusion of Semliki forest virus requires sphingolipids in the target membrane. EMBO J. 1994;13:2797–2808. doi: 10.1002/j.1460-2075.1994.tb06573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Norkin L.C. Virus receptors: implication for pathogenesis and the design of antiviral agents. Clin. Microbiol. Rev. 1995;8:293–315. doi: 10.1128/cmr.8.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Noseworthy J.H., Fields B.N., Dichter M.A., Sobotka C., Pizer E., Perry L.L., Nepom J.T., Greene M.I. Cell receptors for the mammalian reovirus. I. Syngeneic monoclonal anti-idiotypic antibody identifies a cell surface receptor for reovirus. J. Immunol. 1983;131:2533–2538. [PubMed] [Google Scholar]
  140. O'Hara B., Johann S.V., Klinger H.P., Blair D.G., Rubinson H., Dunn K.J., Sass P., Vitek S.M., Robins T. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell. Growth Differ. 1990;1:119–127. [PubMed] [Google Scholar]
  141. Okhuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Nat. Acad. Sci. USA. 1978;75:3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Pardoe I.U., Grewal K.K., Baldeh P., Hamid J., Burnes A.T.H. Persistent infection of K562 cells by encephalomyocarditis virus. J. Virol. 1990;64:6040–6044. doi: 10.1128/jvi.64.12.6040-6044.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Payne H.R., Storz J., Henk W.G. Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors. Arch. Virol. 1990;114:175–189. doi: 10.1007/BF01310747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Pifat D.Y., Ennis W.H., Ward J.M., Oberste M.S., Gonda M.A. Persistent infection of rabbits with the bovine immunodeficiency-like virus. J. Virol. 1992;66:4518–4524. doi: 10.1128/jvi.66.7.4518-4524.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Pileri P., Uematsu Y., Gampagnoli S., Galli G., Falugi F., Petracca R., Weiner A.J., Houghton M., Rosa D., Grandi G., Abrignani S. Binding of hepatitis C virus to CD81. Science. 1998;282:938–940. doi: 10.1126/science.282.5390.938. [DOI] [PubMed] [Google Scholar]
  146. Poste G., Pasternak C.A. Virus-induced cell fusion. In: Poste G., Nicholson G.L., editors. Cell Surface Reviews, Vol. 4. Amsterdam: Elsevier/North-Holland; 1978. pp. 305–357. [Google Scholar]
  147. Price P. Are MHC proteins cellular receptors for CMV? Immunol. Today. 1994;15:295–296. doi: 10.1016/0167-5699(94)90011-6. [DOI] [PubMed] [Google Scholar]
  148. Protopopova E.V., Konavalova S.N., Loktev V.B. Isolation of a cellular receptor for tick-borne encephalitis virus using anti-idiotypic antibodies. Vopr. Virusol. 1997;42:264–268. [PubMed] [Google Scholar]
  149. Qingxue L., Spriggs M.K., Kovats S., Turk S.M., Comeau M.R., Nepom B., Hutt-Fletcher L.M. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 1997;71:4657–4662. doi: 10.1128/jvi.71.6.4657-4662.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Ramos-Castaneda J., Imbert J.L., Barron B.L., Ramos C. A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J. Neurovirol. 1997;3:435–440. doi: 10.3109/13550289709031189. [DOI] [PubMed] [Google Scholar]
  151. Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. [DOI] [PubMed] [Google Scholar]
  152. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypia T. Entry of coxsackievirus A9 into host cells: specific interactions with αVβ3 integrin, the vitronectin receptor. Virology. 1994;203:357–365. doi: 10.1006/viro.1994.1494. [DOI] [PubMed] [Google Scholar]
  153. Roivainen M., Piirainen L., Hovi T. Efficient RGD-independent entry process of coxsackievirus A9. Arch. Virol. 1996;141:1909–1919. doi: 10.1007/BF01718203. [DOI] [PubMed] [Google Scholar]
  154. Ruiz M.-C., Alonso-Torre S.R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F. Rotavirus interaction with isolated membrane vesicles. J. Virol. 1994;68:4009–4016. doi: 10.1128/jvi.68.6.4009-4016.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Sattentau Q.J., Clapham P.R., Weiss R.A., Beverley P.C., Montagnier L., Alhalabi M.F., Gluckman J.-C., Klatzmann D. The human and simian immunodeficiency viruses HIV-1, HIV-2, and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS. 1988;2:101–105. doi: 10.1097/00002030-198804000-00005. [DOI] [PubMed] [Google Scholar]
  156. Sauter N.K., Glick G.D., Crowther R.L., Park S-J., Eisen M.B., Skehel J.J., Knowles J.R., Wiley D.C. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc. Nat. Acad. Sci. USA. 1992;89:324–328. doi: 10.1073/pnas.89.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Sharma A., Rao Z., Fry E., Booth T., Jones E.Y., Rowlands D.J., Simmons D.L., Stuart D.I. Specific interactions between human integrin αVβ3 and chimeric hepatitis B virus core particles bearing the receptor-binding epitope of foot-and-mouth disease virus. Virology. 1997;239:150–157. doi: 10.1006/viro.1997.8833. [DOI] [PubMed] [Google Scholar]
  158. Schultze B., Krempl C., Ballesteros M.L., Shaw L., Schauer R., Enjuanes L., Herrler G. Transmissible gastroenteritis virus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 1996;70:5634–5637. doi: 10.1128/jvi.70.8.5634-5637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Simeoni L., Forte P., Auiti A., Candido A., Campese A.F., Fedele G., Di Tomaso F., Navarra M., Fantoni A. Transgenic mice expressing human HIV receptors become persistently recipient of HIV DNA after injection with infected human cell lines. Folia Microbiol. 1998;43:525–526. doi: 10.1007/BF02820812. [DOI] [PubMed] [Google Scholar]
  160. Staunton D.E., Merluzzi V.J., Rothlein R., Barton S.D., Springer T.A. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  161. Svensson L. Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding. J. Virol. 1992;66:5582–5585. doi: 10.1128/jvi.66.9.5582-5585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Sagara J., Tsukita S., Yonemura S., Kawai A. Cellular actin-binding ezrin-radixin-moesin (ERM) family proteins are incorporated into the rabies virion and closely associated with viral envelope proteins in the cell. Virology. 1994;206:485–494. doi: 10.1016/S0042-6822(95)80064-6. [DOI] [PubMed] [Google Scholar]
  163. Sagara J., Kawai A. Identification of heat shock protein 70 in the rabies virion. Virology. 1992;190:845–848. doi: 10.1016/0042-6822(92)90923-D. [DOI] [PubMed] [Google Scholar]
  164. Schelp C., Greiser-Wilke I., Wolf G., Beer M., Moennig V., Liess B. Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhoea virus infection. Arch. Virol. 1995;140:1997–2009. doi: 10.1007/BF01322688. [DOI] [PubMed] [Google Scholar]
  165. Schnittler H.-J., Mahner F., Drenckhahn D., Klenk H.-D., Feldmann H. Replication of Marburg virus in human endothelial cells: a possible mechanism for the development of viral hemorrhagic disease. J. Clin. Invest. 1993;91:1301–1309. doi: 10.1172/JCI116329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Smith A.L., Tignor G.H. Host cell receptors for two strains of Sindbis virus. Arch. Virol. 1980;66:11–26. doi: 10.1007/BF01315041. [DOI] [PubMed] [Google Scholar]
  167. Sommerfelt M.A., Weiss R.A. Receptor interference groups of 20 retroviruses plating on human cells. Virology. 1990;176:58–69. doi: 10.1016/0042-6822(90)90230-O. [DOI] [PubMed] [Google Scholar]
  168. Srnka C.A., Tiemeyer M., Gilbert J.H., Moreland M., Schweingruber H., de Lappe B.W., James P.G., Gant T., Willough R.E., Yolken R.H., Nashed M.A., Abbas S.A., Laine R.A. Cell surface ligands for rotavirus mouse intestinal glycolipids and synthetic carbohydrate analogs. Virology. 1992;190:794–805. doi: 10.1016/0042-6822(92)90917-E. [DOI] [PubMed] [Google Scholar]
  169. Svensson L. Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding. J. Virol. 1992;66:5582–5585. doi: 10.1128/jvi.66.9.5582-5585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Stehle T., Yan Y., Benjamin T.L., Harrison S.C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature. 1994;369:160–163. doi: 10.1038/369160a0. [DOI] [PubMed] [Google Scholar]
  171. Tavakkol A., Burness A.T.H. Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry. 1990;29:10684–10690. doi: 10.1021/bi00499a016. [DOI] [PubMed] [Google Scholar]
  172. Takeuchi Y., Vile R.G., Simpson G., O'Hara B., Collins M.K., Weiss R.A. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J. Virol. 1992;66:1219–1222. doi: 10.1128/jvi.66.2.1219-1222.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Tomassini J.E., Graham D., DeWitt C.M., Lineberger D.W., Rodkey J.A., Colonno R.J. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Nat. Acad. Sci. USA. 1989;86:4907–4911. doi: 10.1073/pnas.86.13.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Tycko B., Maxfield F.R. Rapid acidification of endocytic vesicles containing α-2-macroglobulin. Cell. 1982;28:643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  175. Ubol S., Griffin D.E. Identification of a putative alphavirus receptor on mouse neural cells. J. Virol. 1991;65:6913–6921. doi: 10.1128/jvi.65.12.6913-6921.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature. 1983;303:35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
  177. Varghese J.N., McKimm-Breschkin J.L., Caldwell J.B., Kortt A.A., Colman P.M. The structure of the complex influenza virus neuraminidase and sialic acid, the viral receptor. Proteins. 1992;14:327–332. doi: 10.1002/prot.340140302. [DOI] [PubMed] [Google Scholar]
  178. Vlasak R., Lnytzes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. van Zeijl M., Johann S.V., Closs E., Cunningham J., Eddy R., Shows T.B., O'Hara B. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc. Nat. Acad. Sci. USA. 1994;91:1168–1172. doi: 10.1073/pnas.91.3.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Vinuela E. Molecular biology of African swine fever virus. In: Becker Y., editor. African Swine Fever. Boston: Martinus Nijhoff Publishing; 1987. pp. 31–49. [Google Scholar]
  181. Wang K.S., Kuhn R.J., Strauss E.G., Ou S., Strauss J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 1992;66:4992–5001. doi: 10.1128/jvi.66.8.4992-5001.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Wang H., Kavanaugh M.P., North R.A., Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature (London) 1991;352:729–731. doi: 10.1038/352729a0. [DOI] [PubMed] [Google Scholar]
  183. Ward T., Pipkin P.A., Clarkson N.A., Stone D.M., Minor P.D., Almond J.W. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994;13:5070–5074. doi: 10.1002/j.1460-2075.1994.tb06836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Watanabe S. The receptor and pathways for human cytomegalovirus entry. Nippon Rinsho. 1998;56:44–49. [PubMed] [Google Scholar]
  185. Watowich S.J., Skehel J.J., Wiley D.C. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure. 1994;2:719–731. doi: 10.1016/S0969-2126(00)00073-3. [DOI] [PubMed] [Google Scholar]
  186. Weiss R.A. Cellular receptors and viral glycoproteins involved in retroviral entry. In: Levy J., editor. The Retroviridae. New York: Plenum Press; 1993. pp. 1–108. [Google Scholar]
  187. Weiss R.A., Tailor C.S. Retrovirus receptors. Cell. 1995;82:531–533. doi: 10.1016/0092-8674(95)90024-1. [DOI] [PubMed] [Google Scholar]
  188. Weis W.I., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus hæmagglutinin complexed with its receptor, sialic acid. Nature. 1988;333:426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  189. White J., Matlin K., Helenius A. Cell fusion by Semliki forest, influenza, and vesicular stomatitis viruses. J. Cell. Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins αVβ3 and αVβ5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319. doi: 10.1016/0092-8674(93)90231-E. [DOI] [PubMed] [Google Scholar]
  191. Willett B.J., Hosie M.J., Jarrett O., Neil J.C. Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9. Immunology. 1994;81:228–233. [PMC free article] [PubMed] [Google Scholar]
  192. Willett B., Hosie M., Shaw A., Neil J. Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus entry and is independent of virus tropism. J. Gen. Virol. 1997;78:611–618. doi: 10.1099/0022-1317-78-3-611. [DOI] [PubMed] [Google Scholar]
  193. Williams R.K., Jiang G.S., Holmes K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Nat. Acad. Sci. USA. 1991;88:5533–5536. doi: 10.1073/pnas.88.13.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Willoughby R.E., Yolken R.H., Schnaar R.L. Rotaviruses specifically bind to the neutral glycosphingolipid. J. Virol. 1990;64:4830–4835. doi: 10.1128/jvi.64.10.4830-4835.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Wilson C.A., Eiden M.V., Anderson W.B., Lehel C., Olah Z. The dual-function hamster receptor for amphotropic murine leukemia virus (MuLV), 10A1 MuLV, and Gibbon ape leukemia virus is a phosphate symporter. J. Virol. 1995;69:534–537. doi: 10.1128/jvi.69.1.534-537.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Wilson C.A., Farrell K.B., Eiden M.V. Properties of a unique form of the murine amphotropic leukemia virus receptor expressed on hamster cells. J. Virol. 1994;68:7697–7703. doi: 10.1128/jvi.68.12.7697-7703.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Wimmer E. Cellular Receptors for Animal Viruses. Cold Spring Harbor: Cold Springer Harbor Laboratory Press; 1994. [Google Scholar]
  198. Xu G., Suzuki T., Tahara H., Kiso M., Hasegawa A., Suzuki Y. Specificity of sialyl-sugar chain mediated recognition by the hemagglutinin of human influenza B virus isolates. J. Biochem. 1994;115:202–207. doi: 10.1093/oxfordjournals.jbchem.a124318. [DOI] [PubMed] [Google Scholar]
  199. Xu R., Mohanty J.G., Crowell R.L. Receptor proteins on newborn Balb/c mouse brain cells for coxsackievirus B3 are immunologically distinct from those on HeLa cells. Virus Res. 1994;35:323–340. doi: 10.1016/0168-1702(94)00100-Q. [DOI] [PubMed] [Google Scholar]
  200. Yasukawa M. HHV-7 infection of CD4 gene transfected cells. Nippon Rinsho. 1998;56:56–61. [PubMed] [Google Scholar]
  201. Yeager C.L., Ashmun R.A., Williams R.K., Cardellichio C.B., Shapiro L.H., Look A.T., Holmes K.V. Human amino peptidase N is a receptor for human coronavirus 229E. Nature (London) 1992;357:420–422. doi: 10.1038/357420a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Yi Y., Rana S., Turner J.D., Gaddis N., Collman R.G. CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. J. Virol. 1998;72:772–777. doi: 10.1128/jvi.72.1.772-777.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Yokomori K., Lai M.M. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 1992;66:6194–6199. doi: 10.1128/jvi.66.10.6194-6199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Yoshikawa Y., Yamanouchi K., Takasu T., Rauf S., Ahmed A. Structural homology between hemagglutinin (HA) of measles virus and the active site of long neurotoxins. Virus Genes. 1991;5:57–67. doi: 10.1007/BF00571731. [DOI] [PubMed] [Google Scholar]
  205. Young J.A., Bates P., Varmus H.E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 1993;67:1811–1814. doi: 10.1128/jvi.67.4.1811-1816.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Folia Microbiologica are provided here courtesy of Nature Publishing Group

RESOURCES