Abstract
More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) — for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.
Keywords: Antibodies, Viruses, SARS-CoV, Hendra virus, Nipah Virus
Footnotes
Foundation items: This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400.
These authors contributed equally to this work.
Contributor Information
Rui Gong, Phone: +86-27-87198232, FAX: +86-27-87198352, Email: gongr@wh.iov.cn.
Dimiter S. Dimitrov, Phone: +1-301-846-1352, FAX: +1-301-846-5598, Email: dimiter.dimitrov@nih.gov
References
- Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature Reviews Drug Discovery. 2008;7:1001–1012. doi: 10.1038/nrd2637. [DOI] [PubMed] [Google Scholar]
- Bale S, Dias J M, Fusco M L, Hashiguchi T, Wong A C, Liu T, Keuhne A I, Li S, Woods V L, Jr., Chandran K, Dye J M, Saphire E O. Structural basis for differential neutralization of ebolaviruses. Viruses. 2012;4:447–470. doi: 10.3390/v4040447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonsignori M, Alam S M, Liao H X, Verkoczy L, Tomaras G D, Haynes B F, Moody M A. HIV-1 antibodies from infection and vaccination: insights for guiding vaccine design. Trends Microbiol. 2012;20:532–539. doi: 10.1016/j.tim.2012.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bossart K N, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern J A, Green D, Hancock T J, Chan Y P, Hickey A C, Dimitrov D S, Wang L F, Broder C C. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog. 2009;5:e1000642. doi: 10.1371/journal.ppat.1000642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bossart K N, Geisbert T W, Feldmann H, Zhu Z, Feldmann F, Geisbert J B, Yan L, Feng Y R, Brining D, Scott D, Wang Y, Dimitrov A S, Callison J, Chan Y P, Hickey A C, Dimitrov D S, Broder C C, Rockx B. A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med. 2011;3:105ra103. doi: 10.1126/scitranslmed.3002901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouchet J, Basmaciogullari S E, Chrobak P, Stolp B, Bouchard N, Fackler O T, Chames P, Jolicoeur P, Benichou S, Baty D. Inhibition of the Nef regulatory protein of HIV-1 by a single-domain antibody. Blood. 2011;117:3559–3568. doi: 10.1182/blood-2010-07-296749. [DOI] [PubMed] [Google Scholar]
- Bowden T A, Aricescu A R, Gilbert R J, Grimes J M, Jones E Y, Stuart D I. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol. 2008;15:567–572. doi: 10.1038/nsmb.1435. [DOI] [PubMed] [Google Scholar]
- Bugli F, Manzara S, Torelli R, Graffeo R, Santangelo R, Cattani P, Fadda G. Human monoclonal antibody fragment specific for glycoprotein G in herpes simplex virus type 2 with applications for serotype-specific diagnosis. J Clin Microbiol. 2004;42:1250–1253. doi: 10.1128/JCM.42.3.1250-1253.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton D R, Pyati J, Koduri R, Sharp S J, Thornton G B, Parren P W, Sawyer L S, Hendry R M, Dunlop N, Nara P L. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science. 1994;266:1024–1027. doi: 10.1126/science.7973652. [DOI] [PubMed] [Google Scholar]
- Carter P J. Potent antibody therapeutics by design. Nature Reviews Immunology. 2006;6:343–357. doi: 10.1038/nri1837. [DOI] [PubMed] [Google Scholar]
- Casadevall A, Dadachova E, Pirofski L. Passive antibody therapy for infectious diseases. Nature Reviews Microbiology. 2004;2:695–703. doi: 10.1038/nrmicro974. [DOI] [PubMed] [Google Scholar]
- Chen L, Kwon Y D, Zhou T, Wu X, O’Dell S, Cavacini L, Hessell A J, Pancera M, Tang M, Xu L, Yang Z Y, Zhang M Y, Arthos J, Burton D R, Dimitrov D S, Nabel G J, Posner M R, Sodroski J, Wyatt R, Mascola J R, Kwong P D. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science. 2009;326:1123–1127. doi: 10.1126/science.1175868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W, Zhu Z, Feng Y, Dimitrov D S. Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers. Proc Natl Acad Sci U S A. 2008;105:17121–17126. doi: 10.1073/pnas.0805297105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W, Prabakaran P, Zhu Z, Feng Y, Streaker E D, Dimitrov D S. Characterization of human IgG repertoires in an acute HIV-1 infection. Exp Mol Pathol. 2012;93:399–407. doi: 10.1016/j.yexmp.2012.09.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W, Streaker E D, Russ D E, Feng Y, Prabakaran P, Dimitrov D S. Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens. Biochem Biophys Res Commun. 2012;417:1164–1169. doi: 10.1016/j.bbrc.2011.12.089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W, Zhu Z, Liao H, Quinnan G V, Jr., Broder C C, Haynes B F, Dimitrov D S. Cross-Reactive Human IgM-Derived Monoclonal Antibodies that Bind to HIV-1 Envelope Glycoproteins. Viruses. 2010;2:547–565. doi: 10.3390/v2020547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corti D, Suguitan A L, Jr., Pinna D, Silacci C, Fernandez-Rodriguez B M, Vanzetta F, Santos C, Luke C J, Torres-Velez F J, Temperton N J, Weiss R A, Sallusto F, Subbarao K, Lanzavecchia A. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest. 2010;120:1663–1673. doi: 10.1172/JCI41902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corti D, Voss J, Gamblin S J, Codoni G, Macagno A, Jarrossay D, Vachieri S G, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez B M, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire L F, Temperton N, Langedijk J P, Skehel J J, Lanzavecchia A. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011;333:850–856. doi: 10.1126/science.1205669. [DOI] [PubMed] [Google Scholar]
- Coughlin M M, Prabhakar B S. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol. 2012;22:2–17. doi: 10.1002/rmv.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darbha R, Phogat S, Labrijn A F, Shu Y, Gu Y, Andrykovitch M, Zhang M Y, Pantophlet R, Martin L, Vita C, Burton D R, Dimitrov D S, Ji X. Crystal structure of the broadly cross-reactive HIV-1-neutralizing Fab X5 and fine mapping of its epitope. Biochemistry. 2004;43:1410–1417. doi: 10.1021/bi035323x. [DOI] [PubMed] [Google Scholar]
- Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol. 2010;184:5696–5704. doi: 10.4049/jimmunol.0903722. [DOI] [PubMed] [Google Scholar]
- Dimitrov D S. Engineered CH2 domains (nanoantibodies) Mabs. 2009;1:26–28. doi: 10.4161/mabs.1.1.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimitrov D S. Therapeutic antibodies, vaccines and antibodyomes. Mabs. 2010;2:347–356. doi: 10.4161/mabs.2.3.11779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimitrov D S. Therapeutic proteins. Methods Mol Biol. 2012;899:1–26. doi: 10.1007/978-1-61779-921-1_1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfus C, Laursen N S, Kwaks T, Zuijdgeest D, Khayat R, Ekiert D C, Lee J H, Metlagel Z, Bujny M V, Jongeneelen M, van der Vlugt R, Lamrani M, Korse H J, Geelen E, Sahin O, Sieuwerts M, Brakenhoff J P, Vogels R, Li O T, Poon L L, Peiris M, Koudstaal W, Ward A B, Wilson I A, Goudsmit J, Friesen R H. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337:1343–1348. doi: 10.1126/science.1222908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du L, He Y, Zhou Y, Liu S, Zheng B J, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–236. doi: 10.1038/nrmicro2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duan J, Yan X, Guo X, Cao W, Han W, Qi C, Feng J, Yang D, Gao G, Jin G. A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem Biophys Res Commun. 2005;333:186–193. doi: 10.1016/j.bbrc.2005.05.089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton B T, Broder C C, Middleton D, Wang L F. Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol. 2006;4:23–35. doi: 10.1038/nrmicro1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekiert D C, Bhabha G, Elsliger M A, Friesen R H, Jongeneelen M, Throsby M, Goudsmit J, Wilson I A. Antibody recognition of a highly conserved influenza virus epitope. Science. 2009;324:246–251. doi: 10.1126/science.1171491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekiert D C, Friesen R H, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse H J, Brandenburg B, Vogels R, Brakenhoff J P, Kompier R, Koldijk M H, Cornelissen L A, Poon L L, Peiris M, Koudstaal W, Wilson I A, Goudsmit J. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science. 2011;333:843–850. doi: 10.1126/science.1204839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elshabrawy H A, Coughlin M M, Baker S C, Prabhakar B S. Human Monoclonal Antibodies against Highly Conserved HR1 and HR2 Domains of the SARS-CoV Spike Protein Are More Broadly Neutralizing. PLoS ONE. 2012;7:e50366. doi: 10.1371/journal.pone.0050366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Euler Z, Schuitemaker H. Cross-reactive broadly neutralizing antibodies: timing is everything. Front Immunol. 2012;3:215. doi: 10.3389/fimmu.2012.00215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fennell B J, Darmanin-Sheehan A, Hufton S E, Calabro V, Wu L, Muller M R, Cao W, Gill D, Cunningham O, Finlay W J. Dissection of the IgNAR V domain: molecular scanning and orthologue database mining define novel IgNAR hallmarks and affinity maturation mechanisms. J Mol Biol. 2010;400:155–170. doi: 10.1016/j.jmb.2010.04.061. [DOI] [PubMed] [Google Scholar]
- Fric J, Bertin-Maghit S, Wang C I, Nardin A, Warter L. Use of human monoclonal antibodies to treat chikungunya virus infection. J Infect Dis. 2013;207:319–322. doi: 10.1093/infdis/jis674. [DOI] [PubMed] [Google Scholar]
- Friedrich B M, Trefry J C, Biggins J E, Hensley L E, Honko A N, Smith D R, Olinger G G. Potential vaccines and post-exposure treatments for filovirus infections. Viruses. 2012;4:1619–1650. doi: 10.3390/v4091619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong R, Chen W, Dimitrov D S. Candidate antibody-based therapeutics against HIV-1. BioDrugs. 2012;26:143–162. doi: 10.2165/11631400-000000000-00000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong R, Wang Y, Ying T, Dimitrov D S. Bispecific Engineered Antibody Domains (Nanoantibodies) That Interact Noncompetitively with an HIV-1 Neutralizing Epitope and FcRn. PLoS ONE. 2012;7:e42288. doi: 10.1371/journal.pone.0042288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenough T C, Babcock G J, Roberts A, Hernandez H J, Thomas W D, Jr., Coccia J A, Graziano R F, Srinivasan M, Lowy I, Finberg R W, Subbarao K, Vogel L, Somasundaran M, Luzuriaga K, Sullivan J L, Ambrosino D M. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis. 2005;191:507–514. doi: 10.1086/427242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haynes B F, Kelsoe G, Harrison S C, Kepler T B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol. 2012;30:423–433. doi: 10.1038/nbt.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higo-Moriguchi K, Akahori Y, Iba Y, Kurosawa Y, Taniguchi K. Isolation of human monoclonal antibodies that neutralize human rotavirus. J Virol. 2004;78:3325–3332. doi: 10.1128/JVI.78.7.3325-3332.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C C, Tang M, Zhang M Y, Majeed S, Montabana E, Stanfield R L, Dimitrov D S, Korber B, Sodroski J, Wilson I A, Wyatt R, Kwong P D. Structure of a V3-containing HIV-1 gp120 core. Science. 2005;310:1025–1028. doi: 10.1126/science.1118398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C C, Venturi M, Majeed S, Moore M J, Phogat S, Zhang M Y, Dimitrov D S, Hendrickson W A, Robinson J, Sodroski J, Wyatt R, Choe H, Farzan M, Kwong P D. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc Natl Acad Sci U S A. 2004;101:2706–2711. doi: 10.1073/pnas.0308527100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang W C, Lin Y, Santelli E, Sui J, Jaroszewski L, Stec B, Farzan M, Marasco W A, Liddington R C. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem. 2006;281:34610–34616. doi: 10.1074/jbc.M603275200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs S A, Diem M D, Luo J, Teplyakov A, Obmolova G, Malia T, Gilliland G L, O’Neil K T. Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Engineering Design & Selection. 2012;25:107–117. doi: 10.1093/protein/gzr064. [DOI] [PubMed] [Google Scholar]
- Kajihara M, Marzi A, Nakayama E, Noda T, Kuroda M, Manzoor R, Matsuno K, Feldmann H, Yoshida R, Kawaoka Y, Takada A. Inhibition of Marburg virus budding by nonneutralizing antibodies to the envelope glycoprotein. J Virol. 2012;86:13467–13474. doi: 10.1128/JVI.01896-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann B, Vogt M R, Goudsmit J, Holdaway H A, Aksyuk A A, Chipman P R, Kuhn R J, Diamond M S, Rossmann M G. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc Natl Acad Sci U S A. 2010;107:18950–18955. doi: 10.1073/pnas.1011036107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koide A, Wojcik J, Gilbreth R N, Hoey R J, Koide S. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. J Mol Biol. 2012;415:393–405. doi: 10.1016/j.jmb.2011.12.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwong P D, Mascola J R. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity. 2012;37:412–425. doi: 10.1016/j.immuni.2012.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwong P D, Wyatt R, Robinson J, Sweet R W, Sodroski J, Hendrickson W A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648–659. doi: 10.1038/31405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J E, Fusco M L, Hessell A J, Oswald W B, Burton D R, Saphire E O. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454:177–182. doi: 10.1038/nature07082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J E, Kuehne A, Abelson D M, Fusco M L, Hart M K, Saphire E O. Complex of a protective antibody with its Ebola virus GP peptide epitope: unusual features of a V lambda x light chain. J Mol Biol. 2008;375:202–216. doi: 10.1016/j.jmb.2007.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li F, Li W, Farzan M, Harrison S C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864–1868. doi: 10.1126/science.1116480. [DOI] [PubMed] [Google Scholar]
- Lindesmith L C, Beltramello M, Donaldson E F, Corti D, Swanstrom J, Debbink K, Lanzavecchia A, Baric R S. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLoS Pathog. 2012;8:e1002705. doi: 10.1371/journal.ppat.1002705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marasco W A, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol. 2007;25:1421–1434. doi: 10.1038/nbt1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marzi A, Yoshida R, Miyamoto H, Ishijima M, Suzuki Y, Higuchi M, Matsuyama Y, Igarashi M, Nakayama E, Kuroda M, Saijo M, Feldmann F, Brining D, Feldmann H, Takada A. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLoS ONE. 2012;7:e36192. doi: 10.1371/journal.pone.0036192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng X, Xiang Y. Generation and characterization of monoclonal antibodies specific for vaccinia virus. Methods Mol Biol. 2012;890:219–232. doi: 10.1007/978-1-61779-876-4_13. [DOI] [PubMed] [Google Scholar]
- Meuleman P, Catanese M T, Verhoye L, Desombere I, Farhoudi A, Jones C T, Sheahan T, Grzyb K, Cortese R, Rice C M, Leroux-Roels G, Nicosia A. A human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. Hepatology. 2012;55:364–372. doi: 10.1002/hep.24692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Migone T S, Subramanian G M, Zhong J, Healey L M, Corey A, Devalaraja M, Lo L, Ullrich S, Zimmerman J, Chen A, Lewis M, Meister G, Gillum K, Sanford D, Mott J, Bolmer S D. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med. 2009;361:135–144. doi: 10.1056/NEJMoa0810603. [DOI] [PubMed] [Google Scholar]
- Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, Ruker F, Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol. 1993;67:6642–6647. doi: 10.1128/jvi.67.11.6642-6647.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakauchi M, Fukushi S, Saijo M, Mizutani T, Ure A E, Romanowski V, Kurane I, Morikawa S. Characterization of monoclonal antibodies to Junin virus nucleocapsid protein and application to the diagnosis of hemorrhagic fever caused by South American arenaviruses. Clin Vaccine Immunol. 2009;16:1132–1138. doi: 10.1128/CVI.00163-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikolov D B, Broder C C, and et al. Submitted.
- Nybakken G E, Oliphant T, Johnson S, Burke S, Diamond M S, Fremont D H. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature. 2005;437:764–769. doi: 10.1038/nature03956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta A, Fujita A, Murayama T, Iba Y, Kurosawa Y, Yoshikawa T, Asano Y. Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner. Microbes Infect. 2009;11:1029–1036. doi: 10.1016/j.micinf.2009.07.010. [DOI] [PubMed] [Google Scholar]
- Oliphant T, Engle M, Nybakken G E, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung K M, Ebel G D, Kramer L D, Fremont D H, Diamond M S. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med. 2005;11:522–530. doi: 10.1038/nm1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pak J E, Sharon C, Satkunarajah M, Auperin T C, Cameron C M, Kelvin D J, Seetharaman J, Cochrane A, Plummer F A, Berry J D, Rini J M. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J Mol Biol. 2009;388:815–823. doi: 10.1016/j.jmb.2009.03.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prabakaran P, Streaker E, Chen W, Dimitrov D S. BMC Research Notes. 2011. 454 antibody sequencing-error characterization and correction. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prabakaran P, Gan J, Wu Y Q, Zhang M Y, Dimitrov D S, Ji X. Structural mimicry of CD4 by a cross-reactive HIV-1 neutralizing antibody with CDR-H2 and H3 containing unique motifs. J Mol Biol. 2006;357:82–99. doi: 10.1016/j.jmb.2005.12.062. [DOI] [PubMed] [Google Scholar]
- Prabakaran P, Zhu Z, Xiao X, Biragyn A, Dimitrov A S, Broder C C, Dimitrov D S. Potent human monoclonal antibodies against SARS CoV, Nipah and Hendra viruses. Expert Opin Biol Ther. 2009;9:355–368. doi: 10.1517/14712590902763755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prabakaran P, Zhu Z, Chen W, Gong R, Feng Y, Streaker E, Dimitrov D S. Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing. Front Microbiol. 2012;3:277. doi: 10.3389/fmicb.2012.00277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, Ji X, Dimitrov D S. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem. 2006;281:15829–15836. doi: 10.1074/jbc.M600697200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiu X, Alimonti J B, Melito P L, Fernando L, Stroher U, Jones S M. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin Immunol. 2011;141:218–227. doi: 10.1016/j.clim.2011.08.008. [DOI] [PubMed] [Google Scholar]
- Rani M, Bolles M, Donaldson E F, Van Blarcom T, Baric R, Iverson B, Georgiou G. Increased antibody affinity confers broad in vitro protection against escape mutants of severe acute respiratory syndrome coronavirus. J Virol. 2012;86:9113–9121. doi: 10.1128/JVI.00233-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichert J M. Monoclonal Antibodies as Innovative Therapeutics. Current Pharmaceutical Biotechnology. 2008;9:423–430. doi: 10.2174/138920108786786358. [DOI] [PubMed] [Google Scholar]
- Saijo M, Tang Q, Shimayi B, Han L, Zhang Y, Asiguma M, Tianshu D, Maeda A, Kurane I, Morikawa S. Antigen-capture enzyme-linked immunosorbent assay for the diagnosis of crimean-congo hemorrhagic fever using a novel monoclonal antibody. J Med Virol. 2005;77:83–88. doi: 10.1002/jmv.20417. [DOI] [PubMed] [Google Scholar]
- Sanchez M D, Pierson T C, McAllister D, Hanna S L, Puffer B A, Valentine L E, Murtadha M M, Hoxie J A, Doms R W. Characterization of neutralizing antibodies to West Nile virus. Virology. 2005;336:70–82. doi: 10.1016/j.virol.2005.02.020. [DOI] [PubMed] [Google Scholar]
- Schrama D, Reisfeld R A, Becker J C. Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery. 2006;5:147–159. doi: 10.1038/nrd1957. [DOI] [PubMed] [Google Scholar]
- Scott L J, Lamb H M. Palivizumab. Drugs. 1999;58:305–311. doi: 10.2165/00003495-199958020-00009. [DOI] [PubMed] [Google Scholar]
- Shedlock D J, Bailey M A, Popernack P M, Cunningham J M, Burton D R, Sullivan N J. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms. Virology. 2010;401:228–235. doi: 10.1016/j.virol.2010.02.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, Steindl F, Katinger H. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. Aids Research and Human Retroviruses. 2001;17:1757–1765. doi: 10.1089/08892220152741450. [DOI] [PubMed] [Google Scholar]
- Strokappe N, Szynol A, Aasa-Chapman M, Gorlani A, Forsman Quigley A, Hulsik D L, Chen L, Weiss R, de Haard H, Verrips T. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS ONE. 2012;7:e33298. doi: 10.1371/journal.pone.0033298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sui J, Hwang W C, Perez S, Wei G, Aird D, Chen L M, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox N J, Bankston L A, Donis R O, Liddington R C, Marasco W A. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol. 2009;16:265–273. doi: 10.1038/nsmb.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ter Meulen J, van den Brink E N, Poon L L, Marissen W E, Leung C S, Cox F, Cheung C Y, Bakker A Q, Bogaards J A, van Deventer E, Preiser W, Doerr H W, Chow V T, de Kruif J, Peiris J S, Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3:e237. doi: 10.1371/journal.pmed.0030237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Throsby M, van den Brink E, Jongeneelen M, Poon L L, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE. 2008;3:e3942. doi: 10.1371/journal.pone.0003942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo M R, Murphy B R, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine. 2004;10:871–875. doi: 10.1038/nm1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore J P, Katinger H. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol. 1996;70:1100–1108. doi: 10.1128/jvi.70.2.1100-1108.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Boheemen S, de Graaf M, Lauber C, Bestebroer T M, Raj V S, Zaki A M, Osterhaus A D, Haagmans B L, Gorbalenya A E, Snijder E J, and Fouchier R A. 2012. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 3. [DOI] [PMC free article] [PubMed]
- van Gils M J, Sanders R W. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology. 2013;435:46–56. doi: 10.1016/j.virol.2012.10.004. [DOI] [PubMed] [Google Scholar]
- Verkoczy L, Kelsoe G, Moody M A, Haynes B F. Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr Opin Immunol. 2011;23:383–390. doi: 10.1016/j.coi.2011.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldmann T A. Immunotherapy: past, present and future. Nature Medicine. 2003;9:269–277. doi: 10.1038/nm0303-269. [DOI] [PubMed] [Google Scholar]
- Weiner L M, Dhodapkar M V, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet. 2009;373:1033–1040. doi: 10.1016/S0140-6736(09)60251-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittle J R, Zhang R, Khurana S, King L R, Manischewitz J, Golding H, Dormitzer P R, Haynes B F, Walter E B, Moody M A, Kepler T B, Liao H X, Harrison S C. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci U S A. 2011;108:14216–14221. doi: 10.1073/pnas.1111497108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J A, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn A L, Hart M K. Epitopes involved in antibody-mediated protection from Ebola virus. Science. 2000;287:1664–1666. doi: 10.1126/science.287.5458.1664. [DOI] [PubMed] [Google Scholar]
- Xiao X, Feng Y, Vu B K, Ishima R, Dimitrov D S. A large library based on a novel (CH2) scaffold: identification of HIV-1 inhibitors. Biochem Biophys Res Commun. 2009;387:387–392. doi: 10.1016/j.bbrc.2009.07.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang M Y, Longo N S, Dimitrov D S. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem Biophys Res Commun. 2009;390:404–409. doi: 10.1016/j.bbrc.2009.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao X D, Chen W Z, Feng Y, Dimitrov D S. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies. Viruses-Basel. 2009;1:802–817. doi: 10.3390/v1030802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu K, Rajashankar K R, Chan Y P, Himanen J P, Broder C C, Nikolov D B. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A. 2008;105:9953–9958. doi: 10.1073/pnas.0804797105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z Y, Werner H C, Kong W P, Leung K, Traggiai E, Lanzavecchia A, Nabel G J. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A. 2005;102:797–801. doi: 10.1073/pnas.0409065102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye J Q, Shao H X, Perez D R. Passive immune neutralization strategies for prevention and control of influenza A infections. Immunotherapy. 2012;4:175–186. doi: 10.2217/imt.11.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ying T, Chen W, Gong R, Feng Y, Dimitrov D S. Soluble monomeric IgG1 Fc. J Biol Chem. 2012;287:19399–19408. doi: 10.1074/jbc.M112.368647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang M Y, Choudhry V, Xiao X, Dimitrov D S. Human monoclonal antibodies to the S glycoprotein and related proteins as potential therapeutics for SARS. Curr Opin Mol Ther. 2005;7:151–156. [PubMed] [Google Scholar]
- Zhang M Y, Xiao X, Sidorov I A, Choudhry V, Cham F, Zhang P F, Bouma P, Zwick M, Choudhary A, Montefiori D C, Broder C C, Burton D R, Quinnan G V, Jr., Dimitrov D S. Identification and characterization of a new cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody. J Virol. 2004;78:9233–9242. doi: 10.1128/JVI.78.17.9233-9242.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Z, Bossart K N, Bishop K A, Crameri G, Dimitrov A S, McEachern J A, Feng Y, Middleton D, Wang L F, Broder C C, Dimitrov D S. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis. 2008;197:846–853. doi: 10.1086/528801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Z, Dimitrov A S, Bossart K N, Crameri G, Bishop K A, Choudhry V, Mungall B A, Feng Y R, Choudhary A, Zhang M Y, Feng Y, Wang L F, Xiao X, Eaton B T, Broder C C, Dimitrov D S. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol. 2006;80:891–899. doi: 10.1128/JVI.80.2.891-899.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley L E, Prabakaran P, Rockx B, Sidorov I A, Corti D, Vogel L, Feng Y, Kim J O, Wang L F, Baric R, Lanzavecchia A, Curtis K M, Nabel G J, Subbarao K, Jiang S, Dimitrov D S. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci U S A. 2007;104:12123–12128. doi: 10.1073/pnas.0701000104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Z, Qin H R, Chen W, Zhao Q, Shen X, Schutte R, Wang Y, Ofek G, Streaker E, Prabakaran P, Fouda G G, Liao H X, Owens J, Louder M, Yang Y, Klaric K A, Moody M A, Mascola J R, Scott J K, Kwong P D, Montefiori D, Haynes B F, Tomaras G D, Dimitrov D S. Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol. 2011;85:11401–11408. doi: 10.1128/JVI.05312-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
